手机版
您的当前位置: 留琼范文网 > 范文大全 > 公文范文 > 2023年度数学学习方法及技巧有哪些9篇【完整版】

2023年度数学学习方法及技巧有哪些9篇【完整版】

下面是小编为大家整理的2023年度数学学习方法及技巧有哪些9篇【完整版】,供大家参考。

2023年度数学学习方法及技巧有哪些9篇【完整版】

虽然这暑假考试已过了,那么接下来我们要继续努力把上期学的不好的,统统学回来,下面有些技巧可以参考一下!下面是小编辛苦为朋友们带来的9篇《数学的学习方法及技巧有哪些》,亲的肯定与分享是对我们最大的鼓励。

数学学习方法 篇一

年级是接触专题最多的时期,小学阶段的重要知识点和难点也都集中在这个阶段,专题的练习有助于知识点和难点的巩固和加强;真题的练习可以为你积累丰富的实战经验。

五年级的孩子可以尝试参加考试和比赛,获奖对于孩子来说是一个莫大的激励,能够促使他们在奥数学习上兴趣倍增,为以后取得更多的证书以及,奠定坚实的基础。

爬坡攻坚阶段

五年级是一个奥数学习的爬坡阶段。如果在这个阶段对奥数进行系统学习,哪怕之前都没怎么接触奥数的孩子,其数学成绩可能有很大幅度的提高。下面我就来说说刚刚接触奥数的同学该怎么学。

由简单入手

五年级是有余力进行额外学习的,但是如果之前没接触过奥数,那么还是从简单入手比较好。一则让孩子通过简单问题逐渐熟悉奥数,一则培养孩子的奥数兴趣,避免接触难题打消学习积极性。

要迅速过渡

五年级的学生是属于小学的高年级阶段,虽然是最初接触奥数,也不必按部就班的学。应该辅助一定的练习对几种类型题和专题进行深入分析了理解,掌握专题的解题思路,做到以点概面,迅速过渡到高年级奥数的学习。

制定学习计划

所谓系统学习,决不是拿过哪块来就学习哪块,必须要有一个合理的学习计划。通过一段时间简单的学习,家长应注意了解孩子的学习进度,帮助孩子制定一份大体的学习计划。然后严格按照计划进行系统学习。

重视基础

奥数是的竞争资本之一。其中大部分重点中学的奥数测试比较重视奥数的基础。而杯赛也基本都是在奥数基础上进行的延伸。所以不论是从的角度还是从提高自身能力的角度考虑,五年级学生都应该重视奥数基础部分。

量变到质变

学习到一定阶段之后,也要注重孩子思维方法的培养了,不能总是停留在解题这个阶段。要综合各个题型进行分析学习,通过知识的了解上升到方法的拓展,再到掌握方法举一反三,实现一个质的飞跃!

数学学习方法技巧 篇二

高中数学学习方法与技巧一、抓住课堂。

理科学习重在平日功夫,不适于突击复习,平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。

高中数学学习方法与技巧二、高质量完成作业。

所谓高质量是指高正确率和高速度。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。另外对于老师布置的思考题,也要认真完成。如果不会决不能轻易放弃,要发扬“钉子”精神,一有空就静心思考,灵感总是突然来到你身边的。最重要的是,这是一次挑战自我的机会。成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深刻的印象。

高中数学学习方法与技巧三、勤思考,多提问。

首先对于老师给出的规律、定理,不仅要知“其然”还要“知其所以然”,做到刨根问底,这便是理解的最佳途径。其次,学习任何学科都应抱着怀疑的态度,尤其是理科。对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。总之,思考、提问是清除学习隐患的最佳途径。

高中数学学习方法与技巧四、总结比较,理清思绪。

(1)知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。

(2)题目的总结比较。同学们可以建立自己的题库。我就有两本题集。一本是错题,一本是精题。对于平时作业,考试出现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。我还把见到的一些极其巧妙或难度高的题记下来,也用红笔批注此题所用方法和思想。时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。最终它们会成为你宝贵的财富,对你的数学学习有极大的帮助。

高中数学学习方法与技巧五、有选择地做课外练习。

课余时间对我们中学生来说是十分珍贵的,所以在做课外练习时要少而精,只要每天做两三道题,天长日久,你的思路就会开阔许多。学习数学方法固然重要,但其实刻苦钻研,精益求精的精神更为重要。只要你坚持不懈地努力,就一定可以学好数学。相信自己,数学会使你智慧的光芒更加耀眼夺目!

数学学习方法 篇三

1、做好预习:

单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

2、认真听课:

听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。

3、认真解题:

课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

4、及时纠错:

课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

5、学会总结:

冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。

6、学会管理:

管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。

目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。

提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。

.挤时间 篇四

时间就是生命。在数学着一方面,更是昔时如金!

1、完成自学稿所余,这有时会被遗忘。所以在下课后,应抓紧时间处理自学稿,遇到不会的题目时,做着重标记,继续向下做,否则时间会不够用,以至于顾不上做上课准备。

2、合理安排时间。现如今自习课越来越多,在学校中学习时间更多的在于自己支配。我建议每天安排40分钟的独立钻研时间,同时在饭后安排20分钟的与同学讨论的时间。在讨论过程中,坚持自己的观点,同时也关注他人意见,做到内外结合,切不可一意孤行!

数学学习方法技巧 篇五

一、数学学习的基本环节与原则

在校学生的学习,是在教师指导下进行的,课堂学习一般由四个环节组成:首先要听老师的课,这就是听课的一环;为了消化和掌握课堂上所传授的知识,需要做练习,这就是作业的一环,为了进一步把所学的知识巩固起来,并了解其内在联系,需要记忆和归纳整理,这就是复习的一环;为了使下一节课学得更主动,事先需要阅读新课,这就是预习的一环。这四个环节的每一部分都有它的独立意义和独立作用,而各部分之间又相互衔接,相互影响,相互制约。这四个环节组成一个小循环,也就是一个学习周期。学习的周期就是学习的车轮运转一周的轨迹,善于学习的人应该从车轮运转一周的撤印中找到它的起止点和中间环节,把四个环节组成定型的学习周期,组成一个学习系统,使每个环节都能充分发挥它们的作用,这样就能取得好的学习效果。

数学学习的基本过程

学生学习独立新知时,一般要经历以下五个基本步骤。

第一步,对所学知识事物或数的变化发展过程进

行初步感知。

如考察事、物的存在、演变的条件与过程;参与对所学知识的演示、操作与实物及再现事物的存在、变化和发展过程,进而获得对所学知识的初步感受。

按触和初步认识新知--建立感性认识

开展联想---形成新知表象

探究新旧知识的内在联系---第二次感知

抽象概括新知本质特征---向理性知识转化

记忆新知---巩固

应用新知---将知识转化为能力

重视学生学数学的基本过程的研究,对改进教学方法、加强学法指导,提高教学质量具有十分重要的意义。

数学课业学习的原则与基本方法

根据心理学的理论和数学的特点,分析数学学习应遵遁以下原则:动力性原则,循序渐进原则。独立思考原则,及时反馈原则,理论联系实际的原则,并由此提出了以下的数学学习方法:

1.求教与自学相结合

在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

2.学习与思考相结合

在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。

3.学用结合,勤于实践

在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

4。博观约取,由博返约

课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究。掌握其知识结构。

5.既有模仿,又有创新

模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。

6.及时复习,增强记忆

课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

7.总结学习经验,评价学习效果

学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。

更深一步是涉及到具体内容的学习方法,如:怎样学习数学概念、数学公式、法则、数学定理、数学语言;怎样提高抽象概括能力、运算能力、逻辑思维能力、空间想象能力、分析问题和解决问题的能力;怎样解数学题;怎样克服学习中的差错;怎样获取学习的反馈信息;怎样进行解题过程的评价与总结;怎样准备考试。对这些问题的进一步的研究和探索,将更有利于学生对数学的学习。

历史上许多优秀的教育家、科学家,他们都有一套适合自己特点的学习方法。比如,我国古代数学家祖冲之的学习方法概括起来是四个字:搜炼古今。搜就是搜索,博采前人的成就,广泛地研究;炼是提炼,把各种主张拿来比较研究,再经过自己的消化和提炼。著名的特理学家爱因斯坦的学习经验是:依靠自学;注意自主,穷根究底,大胆想象,力求理解,重视实验,弄通数学,研究哲学等八个方面。如果我们能将这些教育家、科学家的更多的学习经验挖掘整理出来,将是一批非常宝贵的财富。这也是学习方法研究中的一个重要方面。

学习方法这一问题虽已为广大的教育工作者所重视,并且提出了不少好的学习方法。但是由于长期来“以教代学”的影响,大部分学生对自己的学习方法是否良好还没有引起注意。许多学生还没有根据自己的特点形成适合自己的有效的学习方法。因此,作为一个自觉的学生就必须在学习知识的同时,掌握科学的学习方法。

数学高效的学习方法 篇六

成功既不是靠天才,成功也不是靠努力,成功是靠正确的方法。只有方法正确才可能取得成功。我们周围的同学甚至是我们自己,学习不可能不努力,可是成绩就是就始终上不去,不断增加学习时间,希望自己能够提高考试成绩,总是事与愿违。为什么呢?因为你的方法有问题。

数学的考察主要还是基础知识,难题也不过是在简单题的基础上加以综合。所以课本上的内容是很重要的,如果课本上的知识都不能掌握,就没有触类旁通的资本。

对课本上的内 .co .com m容,上课之前最好能够首先预习一下,否则上课时有一个知识点没有跟上老师的步骤,下面的就不知所以然了,如此恶性循环,就会开始厌烦数学,对学习来说兴趣是很重要的。课后针对性的练习题一定要认真做,不能偷懒,也可以在课后复习时把课堂例题反复演算几遍,毕竟上课的时候,是老师在进行题目的演算和讲解,学生在听,这是一个比较机械、比较被动的接受知识的过程。也许你认为自己在课堂上听懂了,但实际上你对于解题方法的理解还没有达到一个比较深入的程度,并且非常容易忽视一些真正的解题过程中必定遇到的难点。“好脑子不如赖笔头”。对于数理化题目的解法,光靠脑子里的大致想法是不够的,一定要经过周密的笔头计算才能够发现其中的难点并且掌握化解方法,最终得到正确的计算结果。

其次是要善于总结归类,寻找不同的题型、不同的知识点之间的共性和联系,把学过的知识系统化。举个具体的例子:高一代数的函数部分,我们学习了指数函数、对数函数、幂函数、三角函数等好几种不同类型的函数。但是把它们对比着总结一下,你就会发现无论哪种函数,我们需要掌握的都是它的表达式、图象形状、奇偶性、增减性和对称性。那么你可以将这些函数的上述内容制作在一张大表格中,对比着进行理解和记忆。在解题时注意函数表达式与图形结合使用,必定会收到好得多的效果。

最后就是要加强课后练习,除了作业之外,找一本好的参考书,尽量多做一下书上的练习题(尤其是综合题和应用题)。熟能生巧,这样才能巩固课堂学习的效果,使你的解题速度越来越快。

数学学习方法 篇七

一、数学的科学性与数学教学

1.1数学的研究对象和科学性

数学的研究对象是什么?对这个问题,曾有各种不同的回答,也一直为我国数学教育界所重视,并加以讨论研究。仅仅在莫里兹编撰的《数学家言行录》中,就列举了几十种关于数学及数学本性的描述:有的认为数学就是研究数量之间种种的度量关系,是为了发现表示种种数学规律的方程式;有的认为数学仅是关于数量关系的科学;有的认为,混合数学要研究诸如天文学、光学和力学之中的空间关系和数量关系,而不包含直接经验的几何或代数等则称为纯数学,等等。在此,我们仅考察作为几千年数学发展结晶的传统中小学数学课程的主体和基本内容来看数学的研究对象:算术——数学中最基础、最初等的部分,它研究的对象是自然数以及自然数在加、减、乘、除、乘方、开方运算中的性质、法则,在社会实践中有极广泛的应用;初等代数——主要包括有理数、实数及其运算,整式、分式和根式的运算和变形,解方程、方程组和不等式,以及指数、对数运算,排列组合、二项式定理等;初等几何——研究直线、圆、平面等基本图形的形状、大小和相关位置关系;三角学——以三角形的边角关系为基础,研究几何图形中的数量关系及其在测量方面的应用,并研究三角函数的性质及其应用的数学分支,中学数学主要学习其中与平面三角形相联系的部分,即平面三角学;解析几何——借助于坐标系用代数方法来研究一些简单几何图形,例如直线、二次曲线、平面和二次曲面等的一门学科,被分为平面解析几何与空间解析几何两个部分,中学数学以平面解析几何为主要内容。微积分学——是建立在实数、函数和极限等概念基础上研究函数的微分、积分及有关概念和应用的数学分支;概率论——研究随机现象的数量规律;统计学——研究怎样去有效地收集、整理和分析带有随机性的数据,以对所考察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。中小学数学课程虽然与现代数学科学前沿有很大的距离,但却是现代数学科学的基础。“数学研究的对象是现实世界中的数量关系和空间形式。数与形,这两个基本概念是整个数学的两大柱石。整个数学就是围绕着这两个概念的提炼、演变与发展而发展的。数学在各个领域中千变万化的应用也是通过这两个概念而进行的。社会的不断发展,生产的不断提高,为数学提供了无穷源泉与新颖课题,促使数与形的概念不断深化,由此推动了数学的不断前进,在数学中形成了形形式式、多种多样的分支学科。这不仅使数学这一学科日益壮大,蔚为大成,而且使数学的应用也越来越广泛与深入了。”⑴这里,吴文俊院士论述了数学的基本对象,同时也分析了数学的发展,很重要的是指出应该从发展的观点来认识数学的研究对象——数与形。

为什么说数学是一门科学?这就必须弄清科学的概念。科学概念有以下的几层涵义:(1)科学是人类对客观世界的认识,是反映客观事实和规律的知识,它指出了自然界和社会现象间必然、本质、稳定和在一定条件下反复出现的内在联系,科学具有客观真理性;(2)科学是反映客观事实和规律的知识体系,知识单元的内在逻辑特征和知识单元间的本质联系清楚了,建立起了一个完整的知识体系时才可以称为科学,因而科学具有系统性。只是点点滴滴、互不联系的知识还算不上科学;(3)科学是一项反映客观事实和规律的知识体系相关活动的事业,在人类实践活动中起着重大作用。数学就是一门科学。(1)数学的概念、定理、公式、法则都源于客观现实世界,正确反映了客观世界在数与形方面的规律性,数学结论经历了千锤百炼,被证明是经受了人类长期实践检验的客观真理;(2)数学已经建立了严密的科学体系,就整个数学学科而言,可以分为若干分支学科,数学理论的建立在逻辑上具有严密性,数学结论具有清楚性、确定性,不容半点疏忽马虎;(3)数学理论在实践活动中得到广泛应用,并在实践活动中不断丰富、发展。

1.2数学作为一门科学的教学

数学教学一个很重要的方面是应该强调数学教学是一门科学的教学。从这样角度思考问题,作为一门科学的教学,就要求我们在数学教学中重视揭示数学与客观现实的密切联系,揭示数学结论的真理性和真实性,揭示数学理论是怎样从现实世界中得到并不断发展;作为一门科学的教学,数学教学就必须重视数学知识体系的系统性与逻辑性;作为一门科学的教学,就必须重视数学在实践中巨大作用的教学,并重视数学探究活动过程的教学。下面着重就中学数学课程系统性问题作一探讨。

我国中学数学教育一直比较重视数学课程的系统性,根据一些重要的数学教学调查和国际数学教育比较的结论,长期以来我国中小学生数学成绩好的主要原因中首先就是我国中小学数学教学内容的系统性较强⑵。怎样使我国中学数学课程更加具有系统性,是我国中学数学教育应该研究的一个重要问题。数学各个分支学科之间有广泛的联系,并具有学科内在统一性,但不可否认,数学不同分支具有各自不同的研究对象、各自的分支体系。高等学校数学系的数学专业课程总是按照学科分支课程的形式呈现。初等数学中不同学科分支也具有一定的系统性,我国数学教育实践经验告诉我们,数学内容以分科形式呈现能够比较清楚地把蕴涵的思想方法表达出来,学生也容易比较系统、深刻地学到数学基础知识基本技能和其中蕴含的思想方法,更好地加以掌握和运用。回顾我国数学教育的历史,为我国中学数学教育界称道的一些中学数学教材也多釆取分科教学,并达到了较高的教学水平。良好的学科课程体系结构是学生有良好认知结构的基础。目前,高中数学新课程的实施给我国的高中数学教学带来了许多可喜的变化,高中数学课程大大拓宽了中学数学视野,教材内容的广度和深度都有了极大改观,一些传统内容的处理让人看到新的理念,高中数学课程釆用了模块化的结构设置,使教学更加具有灵活性。但另一方面,由于每个模块课时的确定性,使教学内容的选择与安排受到模块课时的限制,导致某些联系很密切的教学内容被安排到了不同的模块,而同一模块中教学内容又未必联系很密切,教学安排的逻辑脉络不够清楚,对于不同必修模块的教学顺序不作规定,就使实际教学产生一些困难,目前,对于这个问题老师们作了大量的研究,但仍没有太好的办法。根据教材试验,教材的模块化设计(尤其是必修模块仍用模块化设计的必要性问题)和系统性问题成为老师们研究最多、反映较多、意见也较多的一个问题,某些教学内容结构体系的变化导致了学生相关数学能力的下降。例如,相当数量的老师认为立体几何中点线面的空间基本关系应该先讲,几何体的体积、面积计算问题应该移到立体几何的后部,有些老师对于立体几何的有关直线、平面位置关系的教学顺序作了调整,老师们希望教材更加有系统性。

中学数学传统教学内容中如初等代数(含三角函数)、立体几何、解析几何和概率统计的基础知识是高中学生应该掌握的数学基础知识,这些内容应该作为高中数学的必修内容,按这些内容本身的逻辑体系安排这些学科分支的教材内容,并应考虑教学内容之间的互相联系,而必修内容则不必再设置模块,而是按照过去大纲教材一样按学期确定教学内容。在确定了必修内容以后的其他内容,如微积分的初步知识及目前的一些选修模块的教学内容,则可作为选修课程。这样,既保证了课程的灵活性和选择性,又兼顾了数学课程的必要的逻辑性和系统性,而教学内容的学分可根据相应教学内容的分量等因素加以确定。应该充分考虑数学教学内容之间的内在逻辑和联系,构建合理的知识体系,要充分考虑继承经过长时间教学试验的、已经比较成熟的体系结构。目前高中数学新课程试验中老师们在实际教学中对各部分内容的教学顺序作了许多研究,并作了部分调整(在一定程度上参考了传统的教学内容安排顺序)。例如一些教学对比实验发现,教学安排先讲映射后讲函数,学生对函数概念的理解要好一些,这说明概念的不同安排顺序必然会对学生掌握有关概念产生影响。当然,在对于内容体系结构作慎重选择后,对于内容的呈现还必须符合时代发展需要。

作为一门科学的教学,数学教学必须重视数学基本概念的教学,因为数学概念是数学理论的基本组成部分。要掌握数学理论,首先要弄清基本概念。对概念定义的叙述要釆取慎重的态度,如果没有充分的理由和实质性的改进,则不宜更新表述,而应该考虑我国数学教学传统的因素,避免引起不必要的混乱。另外,应该注意概念体系的完整性。在新高中数学课程的试验中,有相当比例的老师反映,新课标实验教材中反函数概念讲得不够完整,应该完整讲述反函数的定义域、值域、对应关系等,现在概念没有讲清,学生就常对于概念提出许多问题。另外,传统中学数学教学中反三角函数的最基本的内容,包括基本的概念和性质、定理、公式仍是数学的基础知识,也仍应该列入中学数学的教学内容。要掌握数学理论,首先要弄清基本概念。中学数学教学中以下的概念是极其重要的:集合、映射、运算、函数、方程、向量、概率、抽样、统计、概率,复数、导数、积分、极限,等等。作为一门科学的教学,数学教学还必须重视数学科学中丰富蕴涵的科学思想和方法(其中某些一般科学方法),包括抽象、公理化、演绎、归纳、符号、算法、数形结合、坐标、变换、优化、统计、随机,等等。

1.3量化思想

从数量关系角度来研究事物,使我们对于事物有数量上的把握,这就是基本的数量意识。量是事物存在和发展的规模、程度、速度,以及事物构成因素在空间上的排列等可以用数量表示的规定性。例如,物体的大小、质量的疏密、运动的快慢、温度的高低、颜色的深浅、物体的排列顺序、生产力的发展水平和配置等等,都是事物的量的规定性。质是和量相对应的一个基本范畴,任何事物都是质和量两方面的统一。数学研究的一个重要方面就是现实世界的数量关系,凡是要研究量、量的关系、量的变化,量的关系的变化、量的变化的关系,就少不了数学。不仅如此,量的变化还有变化(如导数以及导数的导数),变化仍用量刻画。对于客观世界的描述大致可以分为定性的描述和定量的描述,而定性描述与定量描述又密不可分。数学研究的最基本的问题是现实世界客观存在的事物的多与少、大与小、位置及位置的变化、可能性大小,等等,这样就产生了数以及表示数的字母,刻画位置的坐标,刻画可能性的概率,以及进一步的方程、不等式、函数、曲线的方程和方程的曲线、随机变量及其概率的分布、分布的函数,等等。解析几何的基本思想是引入坐标系从而借助于坐标对于几何对象作定量的研究,概率论则首先引入随机变量,借助于随机变量对随机现象作量化的处理,从而达到对于随机现象的研究。数学总是从量的方面来描述客观世界的,把客观事物进行量化的描述是数学的基本任务。所以,新高中数学课程提出了量化思想,这应该作为一种重要数学思想在教学中加以认识和重视。

二、数学科学的特点与中学数学教学

一般认为,数学科学具有三个显著特点,这就是抽象性,逻辑严密性,应用广泛性。数学的以上三个特点是互相联系,互相影响,密不可分的,认识数学的以上特点,并注意在中学数学教学中正确把握好数学的特点,具有重要意义。

2.1抽象性

所谓抽象就是在思想中分出事物的一些属性和联系而撇开另一些属性和联系的过程。抽象有助于我们撇开各种次要的影响,抽取事物的主要的、本质的特征并在“纯粹的”形式中单独地考察它们,从而确定这些事物的发展规律。数学以高度抽象的形式出现,首先是其研究的基本对象的高度抽象性。数学抽象最早发生于一些最基本概念的形成过程中,恩格斯对此作了极其精辟地论述:“数和形的概念不是从其他任何地方,而是从现实世界中得到来的。人们用来学习计数,也就是作第一次算术运算的十个指头,可以是任何别的东西,但总不是知性的自由创造物。为了计数,不仅要有可以要有可以计数的对象,而且还要有一种在考察对象时撇开它们的数以外的其他一切特性的能力,而这种能力是长期以经验为依据的历史发展的结果。和数的概念一样,形的概念也完全是从外部世界得来的,而不是从头脑中由纯粹的思维产生出来的。必须先存在具有一定形状的物体,把这些形状加以比较,然后才能构成形的概念。纯数学是以现实世界的空间形式和数量关系,也就是说,以非常现实的材料为对象的。这种材料以极度抽象的形式出现,这只能在表面上掩盖它来源于外部世界。但是,为了对这些形式和关系能从它们的纯粹形态来加以研究,必须使它们完全脱离自己的内容,把内容作为无关紧要的东西放在一边;这样就得到没有长宽高的点,没有厚度和宽度的线,a和b与x和y,常数和变数;只是在最后才得到知性自身的自由创造物和想象物,即虚数。”⑶数的概念,点、线、面等几何图形的概念属于最原始的数学概念。在原始概念的基础上又形成有理数、无理数、复数、函数、微分、积分、n维空间以至无穷维空间这样一些抽象程度更高的概念。从数学研究的问题来看,数学研究的问题的原始素材可以来自任何领域,着眼点不是素材的内容而是素材的形式,不相干的事物在量的侧面,形的侧面可以呈现类似的模式,比如代数的演算可以描述逻辑的推理以至计算机的运行;流体力学的方程也可能出现在金融领域,数学强大的生命力就在于能够把一个领域的思想经过抽象过程的提炼而转移到别的领域,纯数学的研究成果常常能在意想不到的地方开花结果。有些外国数学家由于数学研究对象的抽象性,就认为数学是不知其所云为何物,这种认识是不妥的。

数学科学的高度抽象性,决定数学教育应该把发展学生的抽象思维能力规定为其目标。从具体事物抽象出数量关系和空间形式,把实际问题转化为数学问题的科学抽象过程中,可以培养学生的抽象能力。

在培养学生的抽象思维能力的过程中,应该注意从现实实际事物中抽象出数学概念的提炼过程的教学,又要注意不使数学概念陷入某一具体原型的探讨纠缠。例如,对于直线概念,就要从学生常见并可以理解的实际背景,如拉紧的线,笔直的树干和电线杆等事物中抽象出这个概念,说明直线概念是从许多实际原型中抽象出来的一个数学概念,但不要使这个概念的教学变成对直线的某一具体背景的探讨。光是直线的一个重要实际原型,但如果对于直线概念的教学陷入到对于光的概念的探究,就会导致对直线概念纠緾不清。光的概念涉及了大量数学和物理的问题,牵涉了近现代几何学与物理学的概念,其中包括对欧几里得几何第五公设的漫长研究历史,非欧几何的产生,以及光学,电磁学,时间,空间,从牛顿力学的绝对时空观,到爱因斯坦的狭义相对论和广义相对论,等等。试图从光的实际背景角度去讲直线的概念,陷入对于光的本质的讨论,就使直线的概念教学走入歧途。应该清楚,光不是直线唯一的实际原型,直线的实际原型是极其丰富的。

在培养中学生的抽象思维能力方面,要注意的一个问题是应根据中学生的年龄心理特点,对中学数学教学内容的抽象程度有所控制,过度抽象的内容对普通中学生来说是不适宜的(如某些近代数学的概念)。另外,对于抽象概念的学习应该以抽象概念借以建立起来的大量具体概念作为前提和基础,否则,具体知识准备不够,抽象概念就成为一个实际内容不多的空洞的事物,学生对于学习这样的抽象概念的重要性和必要性就会认识不足。

2.2严密性

所谓数学的严密性,就是要求对于任何数学结论,必须严格按照正确的推理规则,根据数学中已经证明和确认的正确的结论(公理、定理、定律、法则、公式等),经过逻辑推理得到。这就要求得到的结论不能有丝毫的主观臆断性和片面性。数学的严密性与数学的抽象性有紧密的联系,正因为数学有高度的抽象性,所以它的结论是否正确,就不能像物理、化学等学科那样,对于一些结论可以用实验来加以确认,而是依靠严格的推理来证明;而且一旦由推理证明了结论,这个结论也就是正确的。

数学科学具有普遍的严格逻辑性特点,而在数学发展历史中则有许多非常典型的例子。例如,对于无限概念逐步深入的认识,毕达哥拉斯学派对于无理数的发现,牛顿、莱布尼兹的微积分及其严格化,处处连续却处处不可导的函数的构造,集合论悖论的构造,都很好地说明了数学的这种严格的风格和精神。

数学中严谨的推理使得每一个数学结论不可动摇。数学的严格性是数学作为一门科学的要求和保证,数学中的严格推理方法是广泛需要并有广泛应用的。学习数学,不仅学习数学结论,也强调让学生理解数学结论,知道数学结论是怎么证明的,学习数学科学的方法,包括其中丰富蕰涵的严格推理方法以及其他的思维方法。如果数学教学对于一些重要结论不讲证明过程,就使教学价值大为降低。学生也常常因为对于一些重要而基本的数学结论的理解产生困难而不能及时得到教师的指导解惑而对数学学习失去兴趣和信心。根据对于新高中数学课程教学的一些调查,新教材中对于某些公式的推导,某些内容的讲解方面过于简单,不能满足同学的学习要求,特别典型的立体几何中的一些关系判定定理只给出结论,不给出证明,方法上采用了实验科学验证实验结论的方法进行操作确认,就与数学科学的精神和方法不一致,老师们的意见比较大,是目前数学教学实践面临的一个问题。数学教学的一个重要目标是教学生思维的过程与方法,让学生充分认识数学结论的真理性、科学性,发展严密的逻辑思维能力。

严密性程度的教学把握当然应该贯彻因材施教的原则,根据学生和教学实际作调适,数学教材(包括在教师教学用书中)可提供严密程度不同的教学方案,备作选择和参考。例如,对于平面几何中的平行线分线段成比例定理,在实际教学中就可以根据教学实际情况采用三种不同的教学方案,第一种是初中数学教材(如人民教育出版社中学数学室编写的九年义务教育三年制初级中学教科书几何第二册)普遍采用的,即从特殊的情形作说理,不加证明把结论推广到一般情形;第二种是用面积方法来得到定理的证明(如人民教育出版社中学数学室编写的义务教育初中数学实验课本几何第二册的证明方法);第三种则分别就比值是有理数、无理数的不同情况来加以证明,是严密性要求较高,对学生的思维能力要求也较高的一种教学方案(如前苏联的某些初中数学教材的教学要求)。可以肯定,长期不同程度的教学要求的差异也自然导致学生数学能力的较大差异。从培养人才的角度认识,当然应该为不同的学生设计不同的教学方案,才能有利于学生得到充分的发展。

此外,数学科学中逻辑的严密性不是绝对的,在数学发展历史中严密性的程度也是逐步加强的,例如欧几里得的《几何原本》曾经被作为逻辑严密性的一个典范,但后人也发现其中存在不严格,证明过程中也常常依赖于图形的直观。在中学数学教学中培养学生逻辑思维能力的问题上,要注意严密的适度性问题。在这方面,我国中学数学教材工作者和广大教师在初等数学内容的教学处理上作了许多研究,许多处理方式反映了中学生的认识水平,具有重要价值,例如,中学代数教学中许多运算性质的教学,其逻辑严格性不可能达到作为科学意义下数学理论的严格程度,一直以来的处理方法是基本合理的。

此外,在数学教学上追求逻辑上的严密性需要有教学时间的保证,中学生学习时间有限。目前,在实施高中数学新课程以后,各地实际教学反映教学内容多而课时紧的矛盾比较突出,教学中适当地减少了一些对中学生来说比较抽象,或难度较大,或综合性较强的教学内容,使教学时间比较充裕以利于学生消化吸收知识。在目前的高中数学新课程试验中,教学内容的量怎样才比较合理,让一部分高中学生能够学得了的新增的数学选修课内容(尤其是选修系列四的部分专题)切实得到实施,以贯彻落实新高中课程的多样性和选择性,也是值得继续探讨的重要问题。

与此相关的一个问题,数学教学要处理好过程与结果的关系。学习数学基本而重要的目标是会解决各种问题,过分地强调数学教学中的逻辑与证明又会导致知识面不宽,以致对于许多影响深远、应用广泛的数学方法了解不够。这说明,数学教育一方面应该重视逻辑思维能力的培养,还应该重视科学精神的培养,数学思想方法的领会。就数学结论的严格性和严密性,严格和严密的态度是需要的,但是,在一些特定的教学阶段,只要不导致逻辑思维能力的降低,不影响学生对于结论的理解,对于某些类同的数学定理的证明应该可以省略,这应该不会影响数学能力的培养。

再一个问题,在我们强调数学教学中要让学生理解数学过程的同时,不能混淆教材编制与课堂教学之间的界线。一方面,教材编制应该有利于老师组织教学,考虑为老师们优化教学过程提供设计的方案,另一方面,老师的实际教学本身是对教材使用的再创造,必须有一个研究教材,能动地设计符合学生实际的合理教学方案的过程。教材不能过分地引导甚至去限定实际教学方法,更不必把实际教学过程都予以呈现。数学教材有必要为学生的学习钻研以及老师的教学留有空间和余地,所谓让学生把数学书“读厚”,教师教学参考书则应该为老师的教学提供建议和帮助。让教与学有一个从薄到厚,从厚到薄的过程,这是教好数学、学好数学的一个必要的过程。另外,强调在数学教学中要讲过程,很重要的方面是针对的是在实际课堂教学中让学生简单记忆背诵数学结论而不重视数学结论的来龙去脉的教学的问题和现象。作为数学教科书,应该提倡简明扼要,经得起学生对于教科书的推敲和研究。

其他科学工作为了证明自己的论断常常求助于实验,而数学则依靠推理和计算来得到结论。计算是数学研究的一种重要途径,所以,中学数学教学必须培养学生的数量观念和运算能力。现在的计算工具更加先进,还可以借助于大型的计算系统,这使计算能力可以大大加强。新的高中数学课程增设了算法的内容,充实了概率统计、数据处理的内容,在高中技术课程中又增加了“算法与程序设计”模块,这体现了计算机和信息时代对于培养运算能力的新要求。从目前中学数学实际教学情况看,算法内容的教学由于技术条件的限制而存在落实不够的情况,应该解决教学中存在的实际困难,如算法在计算机上真正实现运算,使教学落到实处,这就涉及计算机语言的问题,但在中学数学课程中直接引入计算机程序设计语言又似乎使中学数学教学的内容过于技术化和专门化,这是值得研究的一个问题。

2.3应用广泛性

在日常生活、工作和生产劳动以及科学研究中,数量关系和空间形式方面的问题是普遍存在的,数学应用具有普遍性。数学这门历史悠久的学科,在第二次世界大战以来出现了空前的繁荣。在各分支的研究取得重大突破的同时,数学各分支之间、数学与其他学科之间的新的联系不断涌现,更显著地改变了数学科学的面貌。而意义最为深远的是数学在社会生活的作用的革命性变化,尤为显著的是在技术领域,随着计算机的发展,数学渗入各行各业,并且物化到各种先进设备中。从卫星到核电站,从天气预报到家用电器,高技术的高精度、高速度、高自动、高安全、高质量、高效率等特点,无一不是通过数学模型和数学方法并借助计算机的计算控制来实现的。计算机软件技术在高技术中占了很大比重,而软件技术说到底实际上就是数学技术。数字式电视系统,先进民航飞机的全数字化开发过程,大量的例子说明了,在世界范围数学已经显示出第一生产力的本性,她不但是支撑其他科学的“幕后英雄”,也直接活跃在技术革命第一线。数学对于当代科学也是至关重要的,各门学科越来越走向定量化,越来越需要用数学来表达其定量和定性的规律。计算机本身的产生和进步就强烈地依赖于数学科学的进展。几乎所有重要的学科,如在名称前面加上“数学”或“计算”二字,就是现有的一种国际学术杂志的名字,这表明大量的交叉领域不断涌现,各学科正在充分利用数学方法和成就来加速本学科的发展。关于数学应用的广泛性问题,哈佛大学数学物理教授阿瑟·杰佛(ArthurJaffe)在著名的长篇论文《整理出宇宙的秩序───数学的作用》(此文是美国国家研究委员会的报告《进一步繁荣美国数学》的一个附录)中作了精辟的论述,他充分肯定了数学在现代社会中的重要作用:“在过去的四分之一世纪中,数学和数理技术已经渗透到科学技术和生产中去,并成为其中不可分割的组成部分。在现今这个技术发达的社会里,扫除‘数学盲’的任务已经替代了昔日扫除‘文盲’的任务而成为当今教育的重要目标。人们可以把数学对于我们社会的贡献比喻成空气和食物对于生命的作用。事实上,可以说,我们大

家都生活在数学的时代──我们的文化已经数学化。在我们周围,神通广大的计算机最能反映出数学的存在,……,若要把数学研究对我们社会的实用价值写出来,并说明一些具体的数学思想怎样影响这一世界,那就可以写出几部书来。”⑷他指出:“(1)高明的数学不管怎么抽象,它在自然界中最终必能得到实际的应用;(2)要准确地预测一个数学领域到底在那些地方有用场不可能的。”⑷有许多数学家常常对自己的思想得到的应用感到意外。例如,英国数学家哈代(G.H.Hardy)研究数学纯粹是为了追求数学的美,而不是因为数学有什么实际用处,他曾自信地声称数论不会有什么实际用处,但四十年后质数的性质成了编制新密码的基础,抽象的数论仅与国家安全发生了紧密关系。“计算机科学家报告说每一点数学都以这样或那样的方式在实际应用中帮了忙,物理学家则对于‘数学在自然科学中异乎寻常的有效性’赞叹不已。”⑷

其次,数学教育应该注意培养学生应用数学的意识和能力,这已经成为我国数学教育界的共识。但应该注意的另一方面,数学的应用极其广泛,在中小学有限时间内,介绍数学应用就必须把握好度。数学的应用具有极端的广泛性,任何一个数学概念、定理、公式、法则都有极广的应用。而过量和过度的数学应用问题的教学必然影响数学基础理论的教学,而削弱基础理论的学习又将导致数学应用的削弱。在中学数学教学中,重在让学生初步了解数学在某些领域中的应用,认识数学学习的价值从而重视数学学习。另外,数学的应用也不仅限于具体知识的实际应用,很重要的是一些数学观念和思想在实际工作中的运用。中小学是打基础的时候,所谓打基础主要是打数学基本知识和技能的基础,要让学生有较宽广的数学视野,不应该以在实际中是否直接有用作为标准来决定教学内容的取舍,也不应该要求学生数学学得并不多的时候就去考虑过量的应用问题。初中数学教学实践反映,一些传统的教学内容被删减对于学生数学学习产生了不良影响;高中数学新教材实验回访也反映,高中数学教科书中某些部分实际问题份量“过重”,不少实际问题的例、习题背景太复杂,教学中需花很多时间帮助学生理解实际背景,冲淡了对主要数学知识的学习。实际上,学生参加工作后面临的实际问题会有很大的差异,学生的工作生活背景差异也很大,学生对于实际背景、实际问题的兴趣会有很大的差异,另外实际问题涉及因素常常较多,对于中小学生,尤其是对于义务教育中的学生而言常常显得比较复杂。数学在某一个特殊领域的应用就必然涉及这个领域的许多专门化的知识,对于学生成为较大的困难。此外,学校教育虽然是为学生今后参加工作和生产作的准备,但也不必让学生化过多时间去思考成人阶段才会遇到的一些实际问题,有些实际问题不如留给成年人去考虑。20xx年,人民教育出版社中学数学室邀请北京大学数学科学学院田刚教授等谈数学教育的有关问题,他们在谈到对于数学科学及其教学的看法时指出:数学主要还是计算与推理,从数学中能学到的,最重要的是逻辑思维,抽象化的方法,这是一些普遍有用的东西;数学教育中逻辑思维能力的培养要加强,就应用而言,目前的信息技术中就非常需要很强的逻辑思维能力,尤其是编写程序,编程有长有短,短的出错的可能性小一些,怎样才能短一些又解决问题,不出现错误,这就需要逻辑思维;美国进行微积分的教学改革,用高级的图形计算器,能直观地看,用逼近的方法;技术能对直观地把握数学有一定的帮助,不过真正重要、有用的还是用逻辑推导公式;数学教育要教一些基本的东西。

第三方面,数学具有广泛应用,但并非所有学生都会去从事需要很深奥的数学知识的工作,单就直接应用数学的角度而言,不必每个学生都学习很高深的数学理论。普通百姓经常应用的是最基本的数学知识,学习数学很重要的目的是通过学习提高思维能力。所以,在中小学阶段,一方面数学教学要面向全体学生,使人人都有机会获得良好的数学教育,另一方面也应该根据学生的实际和他们的兴趣爱好,根据每个学生的学业、智能发展特长,让不同的学生在不同的方面得到不同的发展。当然,对于规划在科学和技术领域发展的学生必然应该打下良好的数学基础。人们注意到,大量在中学阶段打下了良好数学基础的学生,包括部分国际国内中学数学竞赛中的优胜者,却没有在后续学习阶段继续以数学作为自己的主要发展方向而选择其他的领域,而选择理工科专业的学生常常在大学阶段仍学习很多的数学科学的课程,这也说明了数学应用的广泛性和数学对于学生发展的重要价值。

数学学习方法 篇八

一、笔记纸——轻松做到没有遗漏

做到知识点和习题类型没有遗漏,最好的办法就是把他们集中起来,按照一定的顺序和思路存放,其载体一要满足内容的不断补充,二要方便查阅。笔记纸是最合适的工具,构造:普通的活页纸背面左侧边缘布了一个带拉手的双面胶条。通过简单操作,即可粘贴到书缝中,相当于给书加了一页。笔记纸的使用要掌握以下技巧:

1、建目录。

一本教材大约包含十章左右,每章少则几页,多则十几页,包含着若干个大标题,而每个大标题又包含若干个小标题,每个小标题又包含着若干个知识点。第一遍通读的时候,按照章节,把标题和知识点摘录出来,写入笔记纸,粘到章节的前面。编这样一个目录,所有东西就一目了然,不仅能够找到所有的知识点,更帮助你清楚的认识知识间的关系,保证你在知识的海洋中永远不会迷失方向。

2、勤总结。

把每章的重点、难点、常考题型等,全部按照一定顺序记录到笔记纸上,粘到对应章节中间。在读书时,要对每个段落进行标记,比如“已经理解,不用再看”、“此题简单、不用再做”等等,这样,复习的时候,目标明确,避免胡子眉毛一把抓,避免了时间的浪费,自然提高了效率。

3、大盘点。

建目录是对每一章的盘点,大盘点则是当学完多章或者整本书的时候,对整本书进行的盘点,以明确各章在整本书中的位置和解决针对多章知识点的综合应用的题目。此外,还要把各章中相同或相近的内容进行横向盘点,比如把数学的公式、定理、公理等分别盘点一次,这样能够方便理解和记忆,是很有用处的。记录这些内容的笔记纸,要粘在教材的目录位置,使方便查阅。

4、常补充。

把课堂上老师补充的内容、自己做题时发现的新知识点、新的题型、解题心得等补充到相应章节处,不断的充实和完善自己的知识库。

通过以上的付出,能够做到对所学课程的所有知识都有清晰的认识,不仅能够认识每一个知识点,还能认识到知识点间的关系,能够综合运用多个知识点解题,解题的时候,知道此题是什么类型,考察的是哪个或哪几个知识点,在教材中的什么位置,自己是否掌握等等,真正做到没有遗漏。

二、自检本——轻松做到真正掌握

做到真正掌握,保证需要记忆的知识点都记住了、做过的题目考试的时候肯定能做对,最好的办法不是多记几次、多做几遍,而是在考试之前,先自己考自己,确认自己的学习成果。自检本是最合适的工具,构造:每本若干组,每组三页,第一页为普通纸,第二、三页为无碳复写纸。抄写题目用复写模式,垫板放在第三页后,在第一页书写后,第二、三页也会有题目;写答案、解题思路和答题用非复写模式,把垫板依次放在第一、二、三页后,书写内容互不影响。自检本的使用要掌握以下技巧:

1、自检知识点记忆成果。

自己动手,把每个知识点都变成考题,逐个检查自己的掌握情况。举例说,当你记忆单词时,复写模式下,把中文写在第一页,然后在非复写模式下,把英文抄在中文的后面。记忆过程中和过后,对照第二页,在草稿纸上默写,完毕后与第一页的答案对照,并在第二页上标记,对的打√,错的打×,不太熟练的打△,下次记忆时,只针对打×和△的,如此反复,直到全部搞定为止。这样做的好处,一是避免在已经会的知识上面浪费时间,二是找到不会的知识,重点解决。

2、错题、典型考题自检。

针对自己在以前考试中做错的题、典型考题和自己认为掌握的不好的考题,复写模式下,在第一页书写题目,在非复写模式下,在第一页写正确答案,在第二页写错误答案及原因分析,练习之后,参看第三页的题目,在草稿纸上解答,完毕后与第一、二页两种对、错答案对照,明确自己的效果,并在第三页题目下方标记,写上如“完全会了,不用再答”、“X月X日做了一遍,不熟,仍需再做“、”仍然不会、重点学习“等等,如此反复,直到全部搞定为止。

数学学习方法 篇九

数学教育的实践和历史表明,数学作为一种文化,对人的全面素质的提高具有巨大的影响。因此,提高基础教育中的数学教学质量,就显得尤为重要。可目前由于受“应试教育”的影响,小学数学教学中存在着“重智育轻德育,重知识轻能力,重结论轻过程”等现象。我们在教学实践中经常碰到这样的情况:教师教得辛苦,学生学得吃力,但教学质量却原地踏步。究其原因,是学生缺乏学习能力,没有学会学习。因此,教给学生学习方法,让学生学会学习是优化课堂教学的关键,在教学实践中,我从以下几方面进行了探索。

一、指导学生阅读数学课本,启迪学法

数学课本是学生获得系统数学知识的主要来源。指导学生阅读数学课本,首先应该教给学生阅读的方法。在教学实践中,我首先指导学生预习,要求学生养成边读、边划、边思考,手脑并用的好习惯。每次教学新内容,我都向学生指出要学习内容的要点,并要求学生根据要点,新授例题下面的提问和提示,带着问题去预习。在指导学生课内自学时,我重点指导学生读懂课本,分析算理的文字说明,让学生深入思考知识的内在联系,启发学生找出其它的解题思路。

数学知识有着严密的逻辑性和系统性,在指导学生阅读数学课本时,我启发学生用联系的观点,转化的观点去自学。如在新授教学简单的百分数应用题时,我先出示下面两道分数应用题:(1)、一桶油重30千克,倒出3/5,倒出几千克?(2)、一桶油倒出3/5,正好倒出18千克,这桶油重几千克?我先让学生讨论并解答这两题,然后再出示例3:一桶油重30千克,倒出60%,倒出几千克?例4:一桶油倒出60%,正好倒出18千克,这桶油重几千克?因为例3和例4这两题是在分数应用题的基础上来的,新旧知识的联系点就是把百分数(60%)转化成分数(3/5),因此,在指导自学过程中,我紧紧抓住了这种联系,让学生将这两题同原来的两题进行比较,从而因势利导,使学生运用已有的知识和技能,顺利地解决了新的问题,也使学生学得轻松,既启迪了学法,也培养了学生的自学能力。

二、引导学生参与教学过程,渗透学法

为了摆正教与学的关系,真实地体现学生主体,教师的主导作用,是为了达到“教是为了不教”的目的。因此,在教学中,我注意增强学生的参与意识,让他们在参与中主动探索,学会学习。在课堂教学中,我采用跟学生共同商讨的教学形式,师生平等相处,引导学生去思考、解决问题,真正使学生在成为学习的主从。而教师的主导作用,我则表现在善于控制教学的双边活动,最大限度地激发学生学习和思维的主动性、积极性和独创性,在学生充分参与教学的过程中,将教法转化为学法,使学法教法配合默契,以取得较高的教学质量。

如教学“圆的面积”时,为了使学生形成正确的空间观念,我从学生的知识特点出发,组织学生积极参与操作实践,探求规律,推出出圆面积的计算公式。教学时,我先用教具演示,将一个圆8等分,拼成一个近似的平行四边形。然后组织学生参与操作,把一个圆16等分,拼成一个近似的平行四边形,再引导学生观察得出:两个拼成的平行四边形,后者更近似于平行四边形。接着引导学生想象,把一个圆32等分、62等分……当把圆无限等分时,就转化成了一个长方形。最后让学生将刚才16等分的两个半圆收拢,并将其中一个半圆及半径分别涂上红色,再展开拼插。这样学生很快发现了拼成的近似长方形的长等于原来圆周长的一半,长方形的宽等于原来圆的半径,从而就很快推导出圆的面积公式为:S=∏R2

这样让学生主动参与教学过程,学生学习热情高,并能创设“想学、乐学、会学”的课堂情景。

三、鼓励学生敢于质疑问难,掌握学法

古人云:学起于思、思源于疑。在教学中,学生思维的源头,就是在教师的鼓励与引导下,对教学设计的题材提出问题,展开思维,并力求抓住知识之间的内在联系,解决实际问题。在教学中,我注意引导学生敢于质疑问难,善于提出有思考价值的问题,并引导他们展开讨论,在解疑的过程中掌握思维方法。

例如:教学了“圆柱的体积”后,我出示了这样一题:“一个圆柱体侧面积是30平方厘米,底面半径5厘米,求它的体积是多少立方厘米? ”

对于这题,学生的一般解法是先求出圆柱体的高,再进而求出圆柱体的体积:圆柱体的高为:30÷(2×3.14×5)= 150/157(厘米),圆柱体的体积为: 3.14×5×5× 150/157=75(立方厘米)。这样做显然较为麻烦。我启发能否用简捷的方法解答这题。学生用质疑的目光瞄向了我,我启发学生用圆柱体的教具自己动手演示。学生就用拼接的方法,把一个圆柱体转化成长方体,然后我再让学生将这个长方体变换位置,把拼成的长方体横放下来,并将有圆柱侧面的一半作为底面,这样再启发学生,这个长方体的高就是原来圆柱体的什么?学生很快就能回答,这个长方体的高就是原来圆柱体的底面半径,这时我再启发学生能否想到更巧妙的方法求出这个长方体即原来圆柱体的体积?这时学生马上想到这个长方体体积为:V=S侧÷2×r=30÷2×5=75(立方厘米)。这样培养了学生的质疑能力,能使学生在探索中掌握学习方法,培养学习能力,最终实现“学生”到“会堂”的转化。

综上所述,我认为在教学中,我们教师除了让学生掌握学习内容和知识,还要检查、分析学生的学习过程,并要培养学生进行自我检查、自我校正、自我评价,并加强学生学习方法的指导,让学生掌握科学的学习方法,使学生真正成为学习的主人,并终身受益,这也是我们教学的最终目的所在。

读书破万卷下笔如有神,以上就是为大家整理的9篇《数学的学习方法及技巧有哪些》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。

留琼范文网 www.bjcnart.com

Copyright © 2002-2018 . 留琼范文网 版权所有

Top