手机版
您的当前位置: 留琼范文网 > 范文大全 > 公文范文 > 物理化学核心教程(沈文霞)课后习题答案

物理化学核心教程(沈文霞)课后习题答案

来源:公文范文 时间:2022-04-22 14:10:02 点击: 推荐访问:

物理化学核心教程--沈殿霞 课后习题答案 第一章 气体 一.基本要求 1.了解低压下气体的几个经验定律;

2.掌握理想气体的微观模型,能熟练使用理想气体的状态方程;

3.掌握理想气体混合物组成的几种表示方法,注意Dalton分压定律和Amagat分体积定律的使用前提;

4.了解真实气体图的一般形状,了解临界状态的特点及超临界流体的应用;

5.了解van der Waals气体方程中两个修正项的意义,并能作简单计算。

二.把握学习要点的建议 本章是为今后用到气体时作铺垫的,几个经验定律在先行课中已有介绍,这里仅是复习一下而已。重要的是要理解理想气体的微观模型,掌握理想气体的状态方程。因为了解了理想气体的微观模型,就可以知道在什么情况下,可以把实际气体作为理想气体处理而不致带来太大的误差。通过例题和习题,能熟练地使用理想气体的状态方程,掌握和物质的量几个物理量之间的运算。物理量的运算既要进行数字运算,也要进行单位运算,一开始就要规范解题方法,为今后能准确、规范地解物理化学习题打下基础。

掌握Dalton分压定律和Amagat分体积定律的使用前提,以免今后在不符合这种前提下使用而导致计算错误。

在教师使用与“物理化学核心教程”配套的多媒体讲课软件讲课时,要认真听讲,注意在Power Point动画中真实气体的图,掌握实际气体在什么条件下才能液化,临界点是什么含义等,为以后学习相平衡打下基础。

三.思考题参考答案 1.如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理? 答:将打瘪的乒乓球浸泡在热水中,使球的壁变软,球中空气受热膨胀,可使其恢复球状。采用的是气体热胀冷缩的原理。

2.在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。试问,这两容器中气体的温度是否相等? 答:不一定相等。根据理想气体状态方程,若物质的量相同,则温度才会相等。

3. 两个容积相同的玻璃球内充满氮气,两球中间用一根玻管相通,管中间有一汞滴将两边的气体分开。当左边球的温度为273 K,右边球的温度为293 K时,汞滴处在中间达成平衡。试问:
(1) 若将左边球的温度升高10 K,中间汞滴向哪边移动? (2) 若将两个球的温度同时都升高10 K,中间汞滴向哪边移动? 答:(1)左边球的温度升高,气体体积膨胀,推动汞滴向右边移动。

(2)两个球的温度同时都升高10 K,汞滴仍向右边移动。因为左边球的起始温度低,升高10 K所占的比例比右边的大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边的比右边的大。

4.在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。请估计会发生什么现象? 答:软木塞会崩出。这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。如果软木塞盖得太紧,甚至会使保温瓶爆炸。防止的方法是,在灌开水时不要灌得太快,且要将保温瓶灌满。

5.当某个纯的物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化? 答:升高平衡温度,纯物质的饱和蒸汽压也升高。但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。当气体的摩尔体积与液体的摩尔体积相等时,这时的温度就是临界温度。

6.Dalton分压定律的适用条件是什么?Amagat分体积定律的使用前提是什么? 答:这两个定律原则上只适用于理想气体。Dalton分压定律要在混合气体的温度和体积不变的前提下,某个组分的分压等于在该温度和体积下单独存在时的压力。Amagat分体积定律要在混合气体的温度和总压不变的前提下,某个组分的分体积等于在该温度和压力下单独存在时所占有的体积。

7.有一种气体的状态方程为 (b为大于零的常数),试分析这种气体与理想气体有何不同?将这种气体进行真空膨胀,气体的温度会不会下降? 答:将气体的状态方程改写为 ,与理想气体的状态方程相比,这个状态方程只校正了体积项,未校正压力项。说明这种气体分子自身的体积不能忽略,而分子之间的相互作用力仍可以忽略不计。所以,将这种气体进行真空膨胀时,气体的温度不会下降,这一点与理想气体相同。

8.如何定义气体的临界温度和临界压力? 答:在真实气体的图上,当气-液两相共存的线段缩成一个点时,称这点为临界点。这时的温度为临界温度,这时的压力为临界压力。在临界温度以上,无论加多大压力都不能使气体液化。

9.van der Waals气体的内压力与体积成反比,这样说是否正确? 答:不正确。根据van der Waals气体的方程式,,其中被称为是内压力,而是常数,所以内压力应该与气体体积的平方成反比。

10.当各种物质都处于临界点时,它们有哪些共同特性? 答:在临界点时,物质的气-液界面消失,液体和气体的摩尔体积相等,成为一种既不同于液相、又不同于气相的特殊流体,称为超流体。高于临界点温度时,无论用多大压力都无法使气体液化,这时的气体就是超临界流体。

四.概念题参考答案 1.在温度、容积恒定的容器中,含有A和B两种理想气体,这时A的分压和分体积分别是和。若在容器中再加入一定量的理想气体C,问和的变化为 ( ) (A) 和都变大 (B) 和都变小 (C) 不变,变小 (D) 变小,不变 答:(C)。这种情况符合Dalton分压定律,而不符合Amagat分体积定律。

2.在温度、容积都恒定的容器中,含有A和B两种理想气体,它们的物质的量、分压和分体积分别为和,容器中的总压为。试判断下列公式中哪个是正确的? ( ) (A) (B) (C) (D) 答:(A)。题目所给的等温、等容的条件是Dalton分压定律的适用条件,所以只有(A)的计算式是正确的。其余的之间的关系不匹配。

3. 已知氢气的临界温度和临界压力分别为。有一氢气钢瓶,在298 K时瓶内压力为,这时氢气的状态为 ( )
(A) 液态 (B) 气态 (C)气-液两相平衡 (D) 无法确定 答:(B)。仍处在气态。因为温度和压力都高于临界值,所以是处在超临界区域,这时仍为气相,或称为超临界流体。在这样高的温度下,无论加多大压力,都不能使氢气液化。

4.在一个绝热的真空容器中,灌满373 K和压力为101.325 kPa的纯水,不留一点空隙,这时水的饱和蒸汽压 ( )
(A)等于零 (B)大于101.325 kPa (C)小于101.325 kPa (D)等于101.325 kPa 答:(D)。饱和蒸气压是物质的本性,与是否留有空间无关,只要温度定了,其饱和蒸气压就有定值,查化学数据表就能得到,与水所处的环境没有关系。

5.真实气体在如下哪个条件下,可以近似作为理想气体处理?( )
(A)高温、高压 (B)低温、低压 (C)高温、低压 (D)低温、高压 答:(C)。这时分子之间的距离很大,体积很大,分子间的作用力和分子自身所占的体积都可以忽略不计。

6.在298 K时,地面上有一个直径为1 m的充了空气的球,其中压力为100 kPa。将球带至高空,温度降为253 K,球的直径胀大到3m,此时球内的压力为 ( )
(A)33.3 kPa (B)9.43 kPa (C)3.14 kPa (D)28.3 kPa 答:(C)。升高过程中,球内气体的物质的量没有改变,利用理想气体的状态方程,可以计算在高空中球内的压力。

7.使真实气体液化的必要条件是 ( )
(A)压力大于 (B)温度低于 (C)体积等于 (D)同时升高温度和压力 答:(B)。是能使气体液化的最高温度,若高于临界温度,无论加多大压力都无法使气体液化。

8.在一个恒温、容积为2 的真空容器中,依次充入温度相同、始态为100 kPa,2 的(g)和200 kPa,1的,设两者形成理想气体混合物,则容器中的总压力为 ( )
(A)100 kPa (B)150 kPa (C)200 kPa (D)300 kPa 答:(C)。等温条件下,200 kPa,1气体等于100 kPa,2气体,总压为=100 kPa+100 kPa=200 kPa 。

9.在298 K时,往容积都等于并预先抽空的容器A、B中,分别灌入100 g和200 g水,当达到平衡时,两容器中的压力分别为和,两者的关系为 ( )
(A)
(B)
(C)= (D)无法确定 答:(C)。饱和蒸气压是物质的特性,只与温度有关。在这样的容器中,水不可能全部蒸发为气体,在气-液两相共存时,只要温度相同,它们的饱和蒸气压也应该相等。

10.在273 K,101.325 kPa时,的蒸气可以近似看作为理想气体。已知的摩尔质量为154的,则在该条件下,气体的密度为 ( )
(A)
(B)
(C)
(D)
答:(A)。通常将273 K,101.325 kPa称为标准状态,在该状态下,1 mol 任意物质的气体的体积等于。根据密度的定义, 11.在某体积恒定的容器中,装有一定量温度为300 K的气体,现在保持压力不变,要将气体赶出1/6,需要将容器加热到的温度为 ( )
(A)350 K (B)250 K (C)300 K (D)360 K 答:(D)。保持V,p不变,, 12.实际气体的压力(p)和体积(V)与理想相比,分别会发生的偏差为( )
(A)p,V都发生正偏差 (B)p,V都发生负偏差 (C)p正偏差,V负偏差 (D)p负偏差,V正偏差 答:(B)。由于实际气体的分子间有相互作用力,所以实际的压力要比理想气体的小。由于实际气体分子自身的体积不能忽略,所以能运用的体积比理想气体的小。

五.习题解析 1.在两个容积均为V的烧瓶中装有氮气,烧瓶之间有细管相通,细管的体积可以忽略不计。若将两烧瓶均浸入373 K的开水中,测得气体压力为60 kPa。若一只烧瓶浸在273 K的冰水中,另外一只仍然浸在373 K的开水中,达到平衡后,求这时气体的压力。设气体可以视为理想气体。

解:因为两个容器是相通的,所以压力相同。设在开始时的温度和压力分别为,后来的压力为,273 K为。系统中氮气的物质的量保持不变,。根据理想气体的状态方程,有 化简得:
2.将温度为300 K,压力为1 800 kPa的钢瓶中的氮气,放一部分到体积为20 的贮气瓶中,使贮气瓶压力在300 K时为100 kPa,这时原来钢瓶中的压力降为1 600 kPa(假设温度未变)。试求原钢瓶的体积。仍假设气体可作为理想气体处理。

解:
设钢瓶的体积为V,原有的气体的物质的量为,剩余气体的物质的量为,放入贮气瓶中的气体物质的量为。根据理想气体的状态方程, 3.用电解水的方法制备氢气时,氢气总是被水蒸气饱和,现在用降温的方法去除部分水蒸气。现将在298 K条件下制得的饱和了水气的氢气通入283 K、压力恒定为128.5 kPa的冷凝器中,试计算:在冷凝前后,混合气体中水气的摩尔分数。已知在298 K和283 K时,水的饱和蒸气压分别为3.167 kPa和1.227 kPa。混合气体近似作为理想气体。

解:
水气所占的摩尔分数近似等于水气压力与冷凝操作的总压之比 在冷凝器进口处,T=298 K,混合气体中水气的摩尔分数为 在冷凝器出口处,T=283 K,混合气体中水气的摩尔分数为 可见这样处理以后,氢气中的含水量下降了很多。

4.某气柜内贮存氯乙烯=300 ,压力为122 kPa,温度为300 K。求气柜内氯乙烯气体的密度和质量。若提用其中的100 ,相当于氯乙烯的物质的量为多少?已知其摩尔质量为62.5 ,设气体为理想气体。

解:
根据已知条件,气柜内贮存氯乙烯的物质的量为,则氯乙烯的质量为。根据密度的定义。将以上的关系式代入,消去相同项,得 提用其中的100 ,相当于提用总的物质的量的,则提用的物质的量为 或 5.有氮气和甲烷(均为气体)的气体混合物100 g,已知含氮气的质量分数为0.31。在420 K和一定压力下,混合气体的体积为9.95 。求混合气体的总压力和各组分的分压。假定混合气体遵守Dalton分压定律。已知氮气和甲烷的摩尔质量分别为和。

解:
混合气体中,含氮气和甲烷气的物质的量分别为 混合气体的总压力为 混合气体中,氮气和甲烷气的分压分别为 6.在300 K时,某一容器中含有(g)和(g)两种气体的混合物,压力为152 kPa。将(g)分离后,只留下(g),保持温度不变,压力降为50.7 kPa,气体质量减少了14 g。已知(g)和(g)的摩尔质量分别为和。试计算:
(1)容器的体积 (2)容器中(g)的质量 (3)容器中最初的气体混合物中,(g)和(g)的摩尔分数 解:
(1)这是一个等温、等容的过程,可以使用Dalton分压定律,利用(g)分离后,容器中压力和质量的下降,计算(g)的物质的量,借此来计算容器的体积。

(2)
在T ,V 不变的情况下,根据Dalton分压定律,有 (3)
7.设在一个水煤气的样品中,各组分的质量分数分别为:,,,,。试计算:
(1)混合气中各气体的摩尔分数 (2)当混合气在670 K和152 kPa时的密度 (3)各气体在上述条件下的分压 解:
设水煤气的总质量为100g,则各物质的质量分数乘以总质量即为各物质的质量,所以,在水煤气样品中各物的物质的量分别为(各物质的摩尔质量自己查阅):
(1)
同理有:
同理有:,, , (2)因为 (3)根据Dalton分压定律 ,所以 同理 ,, 8.在288 K时,容积为20 的氧气钢瓶上压力表的读数为10.13 MPa,氧气被使用一段时间以后,压力表的读数降为2.55 MPa,试计算使用掉的氧气的质量。设近似可以使用理想气体的状态方程。已知。

解:
在氧气被使用前,钢瓶中含氧气的质量为 氧气被使用后,钢瓶中剩余氧气的质量为 则使用掉的氧气的质量为 使用掉的氧气的质量也可以从压力下降来计算 9.由氯乙烯(),氯化氢()和乙烯()构成的理想气体混合物,各组分的摩尔分数分别为,和。在恒定温度和压力为的条件下,用水淋洗混合气以去除氯化氢,但是留下的水气分压为。试计算洗涤后的混合气中氯乙烯和乙烯的分压。

解:将氯化氢去除以后,在留下的混合气中,氯乙烯和乙烯所具有的压力为 根据在原来混合物中,氯乙烯和乙烯所占的摩尔分数,分别来计算它们的分压,即 或 10.在273 K和40.53 MPa时,测得氮气的摩尔体积为,试用理想气体状态方程计算其摩尔体积,并说明为何实验值和计算值两个数据有差异。

解:
因为压力高,(g)已经偏离理想气体的行为。

11.有1 mol (g),在273 K时的体积为70.3 ,试计算其压力(实验测定值为40.5 MPa),并说明如下两种计算结果为何有差异。

(1)用理想气体状态方程 (2)用van der Waals方程。已知van der Waals常数 ,。

解:(1)
(2)
从计算结果可知,因为压力很高,气体已偏离理想气体的行为,用van der Waals方程计算误差更小一些。

12.在一个容积为0.5.的钢瓶内,放有16 kg温度为500 K的(g),试计算容器内的压力。

(1)用理想气体状态方程 (2)由van der Waals方程。已知(g)的van der Waals常数 , ,(g)的摩尔质量。

解:
(1)
(2)
第二章 热力学第一定律 一.基本要求 1.掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系统性质、功、热、状态函数、可逆过程、过程和途径等。

2.能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中的和的值。

3.了解为什么要定义焓,记住公式的适用条件。

4.掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学第一定律计算理想气体在可逆或不可逆的等温、等压和绝热等过程中,的计算。

5.掌握等压热与等容热之间的关系,掌握使用标准摩尔生成焓和标准摩尔燃烧焓计算化学反应的摩尔焓变,掌握与之间的关系。

6.了解Hess定律的含义和应用,学会用Kirchhoff定律计算不同温度下的反应摩尔焓变。

二.把握学习要点的建议 学好热力学第一定律是学好化学热力学的基础。热力学第一定律解决了在恒定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一些基本概念。这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做习题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。

例如,功和热,它们都是系统与环境之间被传递的能量,要强调“传递”这个概念,还要强调是系统与环境之间发生的传递过程。功和热的计算一定要与变化的过程联系在一起。譬如,什么叫雨?雨就是从天而降的水,水在天上称为云,降到地上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说,“雨”是一个与过程联系的名词。在自然界中,还可以列举出其他与过程有关的名词,如风、瀑布等。功和热都只是能量的一种形式,但是,它们一定要与传递的过程相联系。在系统与环境之间因温度不同而被传递的能量称为热,除热以外,其余在系统与环境之间被传递的能量称为功。传递过程必须发生在系统与环境之间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是热力学能从一种形式变为另一种形式。同样,在环境内部传递的能量,也是不能称为功(或热)的。例如在不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所以。这个变化只是在系统内部,热力学能从一种形式变为另一种形式,而其总值保持不变。也可以通过教材中的例题,选定不同的对象作系统,则功和热的正、负号也会随之而不同。

功和热的取号也是初学物理化学时容易搞糊涂的问题。目前热力学第一定律的数学表达式仍有两种形式,即:,虽然已逐渐统一到用加号的形式,但还有一个滞后过程。为了避免可能引起的混淆,最好从功和热对热力学能的贡献的角度去决定功和热的取号,即:是使热力学能增加的,还是使热力学能减少的,这样就容易掌握功和热的取号问题。

焓是被定义的函数,事实上焓是不存在的,仅是几个状态函数的组合。这就要求理解为什么要定义焓?定义了焓有什么用处?在什么条件下,焓的变化值才具有一定的物理意义,即。

务必要记住这两个公式的使用限制条件。凭空要记住公式的限制条件,既无必要,又可能记不住,最好从热力学第一定律的数学表达式和焓的定义式上理解。例如,根据热力学第一定律, 要使或,必须使,这就是该公式的限制条件。同理:根据焓的定义式, 将上面的表达式代入,得 要使或,必须在等压条件下,,系统与环境的压力相等,和,这就是该公式的限制条件。以后在热力学第二定律中的一些公式的使用限制条件,也可以用相似的方法去理解。

状态函数的概念是十分重要的,必须用实例来加深这种概念。例如:多看几个不同的循环过程来求和,得到,,这样可以加深状态函数的“周而复始,数值还原”的概念。例如和可以通过燃烧、爆鸣、热爆炸和可逆电池等多种途径生成水,只要保持始态和终态相同,则得到的和的值也都相同,这样可以加深“异途同归,值变相等”的概念。

化学反应进度的概念是很重要的,必须牢牢掌握。以后只要涉及化学反应,都要用到反应进度的概念。例如,在化学反应摩尔焓变的求算中,今后在化学平衡中,利用反应的Gibbs自由能随反应进度的变化曲线来判断化学变化的方向与限度,在化学动力学中利用反应进度来定义反应的速率,以及在电化学中,利用电化学的实验数据来计算反应进度为1 mol时的热力学函数的变化值等,都要用到反应进度的概念,所以必须掌握化学反应进度的概念。

用标准摩尔生成焓和标准摩尔燃烧焓来计算化学反应的摩尔焓变时,相减的次序是不一样的,必须要理解为什么不一样,这样在做习题时就不会搞错了。

要学会查阅热力学数据表,这在今后的学习和工作中都是十分有用的。

三.思考题参考答案 1.判断下列说法是否正确,并简述判断的依据。

(1)状态给定后,状态函数就有定值;
状态函数固定后,状态也就固定了。

(2)状态改变后,状态函数一定都改变。

(3)因为,所以是特定条件下的状态函数。

(4)根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量。

(5)在等压下,用机械搅拌某绝热容器中的液体,使液体的温度上升,这时。

(6)某一化学反应在烧杯中进行,热效应为,焓变为。若将化学反应安排成反应相同的可逆电池,使化学反应和电池反应的始态和终态都相同,这时热效应为,焓变为,则。

答:(1)对。因为状态函数是状态的单值函数,状态固定后,所有的状态函数都有定值。反之,状态函数都有定值,状态也就被固定了。

(2)不对。虽然状态改变后,状态函数会改变,但不一定都改变。例如,系统发生了一个等温过程,体积、压力等状态函数发生了改变,系统的状态已与原来的不同,但是温度这个状态函数没有改变。

(3)不对。热力学能U和焓H是状态函数,而DU,DH 仅是状态函数的变量。和仅在特定条件下与状态函数的变量相等,所以和不可能是状态函数。

(4)不对。系统可以降低自身的热力学能来对外做功,如系统发生绝热膨胀过程。但是,对外做功后,系统自身的温度会下降。

(5)不对。因为环境对系统进行机械搅拌,做了机械功,这时,所以不符合的使用条件。使用这个公式,等压和,这两个条件一个也不能少。

(6)对。因为焓H是状态函数,只要反应的始态和终态都相同,则焓变的数值也相同,与反应具体进行的途径无关,这就是状态函数的性质,“异途同归,值变相等”。但是,两个过程的热效应是不等的,即。

2.回答下列问题,并简单说明原因。

(1)可逆热机的效率最高,在其他条件都相同的前提下,用可逆热机去牵引火车,能否使火车的速度加快? (2)与盐酸发生反应,分别在敞口和密闭的容器中进行,哪一种情况放的热更多一些? (3)在一个用导热材料制成的圆筒中,装有压缩空气,圆筒中的温度与环境达成平衡。如果突然打开筒盖,使气体冲出,当压力与外界相等时,立即盖上筒盖。过一会儿,筒中气体的压力有何变化? (4)在装有催化剂的合成氨反应室中,与的物质的量之比为,反应方程式为。分别在温度为和的条件下,实验测定放出的热量对应为和。但是用Kirchhoff定律计算时 计算结果与实验值不符,试解释原因。

答:(1)可逆热机的效率虽高,但是可逆过程是一个无限缓慢的过程,每一步都接近于平衡态。所以,用可逆热机去牵引火车,在有限的时间内是看不到火车移动的。所以,可逆功是无用功,可逆热机的效率仅是理论上所能达到的最高效率,使实际不可逆热机的效率尽可能向这个目标靠拢,实际使用的热机都是不可逆的。

(2)当然在密闭的容器中进行时,放的热更多一些。因为在发生反应的物质的量相同时,其化学能是一个定值。在密闭容器中进行时,化学能全部变为热能,放出的热能就多。而在敞口容器中进行时,一部分化学能用来克服大气的压力做功,余下的一部分变为热能放出,放出的热能就少。

(3)筒中气体的压力会变大。因为压缩空气冲出容器时,筒内的气体对冲出的气体做功。由于冲出的速度很快,筒内气体来不及从环境吸热,相当于是个绝热过程,所以筒内气体的温度会下降。当盖上筒盖又过了一会儿,筒内气体通过导热壁,从环境吸收热量使温度上升,与环境达成平衡,这时筒内的压力会增加。

(4)用Kirchhoff公式计算的是反应进度等于1 mol时的等压热效应,即摩尔反应焓变。用实验测定的是反应达平衡时的等压热效应,由于合成氨反应的平衡转化率比较低,只有25%左右,所以实验测定值会比理论计算的结果小。如果将反应物过量,使生成产物的数量与化学计量方程的相同,那实验值与计算值应该是等同的。

3.理想气体的绝热可逆和绝热不可逆过程的功,都可用公式计算,那两种过程所做的功是否一样? 答:当然不一样,因为从同一个始态出发,绝热可逆与绝热不可逆两个过程不可能到达同一个终态,两个终态温度不可能相同,即DT不可能相同,所以做的功也不同。通常绝热可逆过程做的功(绝对值)总是大于不可逆过程做的功。

4.指出如下所列3个公式的适用条件:
(1)
(2)
(3)
答:(1)式,适用于不做非膨胀功()的等压过程()。

(2)式,适用于不做非膨胀功()的等容过程()。

(3)式,适用于理想气体不做非膨胀功()的等温可逆过程。

5.用热力学的基本概念,判断下列过程中,,,和的符号,是,,还是。第一定律的数学表示式为 。

(1)
理想气体的自由膨胀 (2)
van der Waals气体的等容、升温过程 (3)
反应 在非绝热、等压条件下进行 (4)
反应在绝热钢瓶中进行 (5)
在273.15 K,101.325kPa下,水结成冰 答:(1)W = 0 因为是自由膨胀,外压为零。

Q = 0 理想气体分子之间的相互引力小到可以忽略不计,体积增大,分子间的势能并没有变化,能保持温度不变,所以不必从环境吸热。

DU = 0 因为温度不变,理想气体的热力学能仅是温度的函数。

或因为W = 0,Q = 0,所以DU = 0。

DH = 0 因为温度不变,理想气体的焓也仅是温度的函数。

或因为,DU = 0,所以DH = 0。

(2)W = 0 因为是等容过程,膨胀功为零。

Q > 0 温度升高,系统吸热。

DU > 0 系统从环境吸热,使系统的热力学能增加。

DH > 0 根据焓的定义式,。

(3)W < 0 反应会放出氢气,要保持系统的压力不变,放出的氢气推动活塞,克服外压对环境做功。

Q < 0 反应是放热反应。

DU < 0 系统既放热又对外做功,使热力学能下降。

DH < 0 因为这是不做非膨胀功的等压反应,DH = Qp 。

(4)W = 0 在刚性容器中,进行的是恒容反应,不做膨胀功。

Q = 0 因为用的是绝热钢瓶 DU = 0 根据热力学第一定律,能量守恒,热力学能不变。以后,在不考虑非膨胀功的情况下,只要是在绝热刚性容器中发生的任何变化,,和都等于零,绝热刚性容器相当于是一个孤立系统。

DH > 0 因为是在绝热钢瓶中发生的放热反应,气体分子数没有变化,钢瓶内的温度会升高,导致压力也增高,根据焓的定义式,可以判断焓值是增加的。

或 (5)W < 0 在凝固点温度下水结成冰,体积变大,系统克服外压,对环境做功。

Q < 0 水结成冰是放热过程。

DU < 0 系统既放热又对外做功,热力学能下降。

DH < 0 因为这是等压相变,DH = Qp 。

6.在相同的温度和压力下,一定量氢气和氧气从四种不同的途径生成水:(1)氢气在氧气中燃烧,(2)爆鸣反应,(3)氢氧热爆炸,(4)氢氧燃料电池。在所有反应过程中,保持反应方程式的始态和终态都相同,请问这四种变化途径的热力学能和焓的变化值是否相同? 答:应该相同。因为热力学能和焓是状态函数,只要始、终态相同,无论经过什么途径,其变化值一定相同。这就是状态函数的性质:“异途同归,值变相等”。

7.一定量的水,从海洋蒸发变为云,云在高山上变为雨、雪,并凝结成冰。冰、雪熔化变成水流入江河,最后流入大海,一定量的水又回到了始态。问历经整个循环,这一定量水的热力学能和焓的变化是多少? 答:水的热力学能和焓的变化值都为零。因为热力学能和焓是状态函数,不论经过怎样复杂的过程,只要是循环,系统回到了始态,热力学能和焓的值都保持不变。这就是状态函数的性质:“周而复始,数值还原”。

8.在298 K,101.3 kPa压力下,一杯水蒸发为同温、同压的气是一个不可逆过程,试将它设计成可逆过程。

答:通常有四种相变可以近似看作是可逆过程:(1)在饱和蒸气压下的气-液两相平衡,(2)在凝固点温度时的固-液两相平衡,(3)在沸点温度时的气-液两相平衡,(4)在饱和蒸气压下的固-气两相平衡(升华)。可以将这个在非饱和蒸气压下的不可逆蒸发,通过两种途径,设计成可逆过程:
(1) 绕到沸点;
将298 K,101.3 kPa压力下的水,等压可逆升温至,在沸点温度下可逆变成同温、同压的蒸气,然后再等压可逆降温至298 K。

(2) 绕到饱和蒸气压;
将298 K,101.3 kPa压力下的水,等温可逆降压至饱和蒸气压,在298 K和饱和蒸气压下,可逆变成同温、同压的蒸气,再等温可逆升压至101.3 kPa。变化的示意图如下:
究竟设计哪一种可逆途径,要根据题目的已知条件决定。

四.概念题参考答案 1.对于理想气体的热力学能,有下述四种理解:
(1) 状态一定,热力学能也一定 (2) 对应于某一状态的热力学能是可以直接测定的 (3) 对应于某一状态,热力学能只有一个数值,不可能有两个或两个以上的数值 (4) 状态改变时,热力学能一定跟着改变,其中都正确的是:
( ) (A) (1),(2) (B) (3),(4) (C) (2),(4) (D) (1),(3) 答:(D)。热力学能是状态的单值函数,其绝对值无法测量。

2.有一高压钢筒,打开活塞后气体喷出筒外,当筒内压力与筒外压力相等时关闭活塞,此时筒内温度将 ( ) (A) 不变 (B) 升高 (C) 降低 (D) 无法判定 答:(C)。压缩空气冲出钢筒时,筒内的气体对冲出的气体做功。由于冲出的速度很快,筒内气体来不及从环境吸热,相当于是个绝热过程,所以筒内气体的温度会下降。

3.有一真空钢筒,将阀门打开时,大气(视为理想气体)冲入瓶内,此时瓶内气体的温度将 ( )
(A) 不变 (B) 升高 (C) 降低 (D) 无法判定 答:(B)。空气冲入钢筒时,外面的气体对冲入钢筒的气体做功。由于冲入的速度很快,筒内的气体来不及向环境放热,相当于是个绝热过程,所以筒内气体的温度会升高。

4.将1 mol 373 K,标准压力下的水,分别经历:(1) 等温、等压可逆蒸发,(2) 真空蒸发,变成373 K,标准压力下的水气。这两种过程的功和热的关系为 ( ) (A) W 1< W 2 Q 1> Q 2 (B) W 1< W 2 Q 1< Q 2 (C) W 1= W 2 Q 1= Q 2 (D) W 1> W 2 Q 1< Q 2 答:(A)。过程(1)中,系统要对外做功,W 1<0,而过程(2)是真空蒸发,W 2=0,所以W 1< W 2。过程(1)中,既要对外做功,又要保持温度不变,再加上相变所吸的热,所以Q 1> Q 2。

5.在一个密闭绝热的房间里放置一台电冰箱,将冰箱门打开,并接通电源使冰箱工作。过一段时间之后,室内的平均气温将 ( ) (A) 升高 (B) 降低 (C) 不变 (D) 不一定 答:(A)。对冰箱做的电功,全转化为热释放在房间内。

6. 凡是在孤立系统中进行的过程,其ΔU和ΔH的值一定是 ( ) (A) ΔU > 0 ,ΔH > 0 (B) ΔU = 0 ,ΔH = 0 (C) ΔU < 0 ,ΔH < 0 (D) ΔU = 0 ,ΔH不确定 答:(D)。热力学能是能量的一种,遵循能量守衡定律,在孤立系统中热力学能保持不变。而焓虽然有能量单位,但它是定义出来的函数,不是能量,不遵循能量守衡定律,所以在孤立系统中发生的变化,ΔH的值是不确定的,要根据具体的变化过程而定。例如,在绝热钢瓶里,发生了一个气体分子数不变的放热气相反应,如,则ΔH大于零。但是,如果发生的是,虽然反应也放热,但是由于气体分子数减少,钢瓶内的压力下降,ΔH会小于零。

7.理想气体向真空作绝热膨胀后,它的温度将 ( )
(A) 升高 (B) 降低 (C) 不变 (D) 不一定 答:(C)。理想气体分子之间的相互引力小到可以忽略不计,体积增大,分子间的势能并没有变化,能保持温度不变 8.某气体的状态方程为(是大于零的常数),此气体向真空作绝热膨胀,它的温度将 ( )
(A) 升高 (B) 降低 (C) 不变 (D) 不一定 答:(C)。将状态方程改写为,与理想气体的状态方程对照,说明这种气体的自身体积不能忽略,但是分子间的引力与理想气体一样,是小到可以忽略不计的。所以,体积增大,分子间的势能并没有变化,能保持温度不变 9.公式适用于下列哪个过程 ( )
(A) 理想气体作绝热等外压膨胀。

(B) (C) (D) 理想气体作等温可逆膨胀 答:(B)。的适用条件是等压和,两个条件缺一不可。(A)中是等外压,而非等压,(C)中有电功,(D)是个不等压过程。所以,只有(B)是适用的。

10.有一个理想气体的γ =Cp/CV =1.40,则该气体为几原子分子? ( ) (A) 单原子分子 (B) 双原子分子 (C) 三原子分子 (D) 四原子分子 答:(B)。根据能量均分原理,在一般温度下,单原子分子只有3个平动自由度,所以。因为理想气体的,所以。同理,双原子分子的,则。现在,,相当于,,这是双原子分子的特征。

11.反应的计量方程为,当以5 mol 与4 mol 混合发生反应,最后生成2 mol 。则该反应进度等于 ( ) (A) 1 mol (B) 2 mol (C) 4 mol (D) 5 mol 答:(A)。根据反应的计量方程,现在用生成物来表示反应的进度,则 显然,反应物和都是过量的。

12.欲测定某有机物的燃烧热Qp,一般使反应在氧弹中进行,实验测得的热效应为QV。已知两种热效应之间的关系为,式中的Δn是指 ( ) (A) 生成物与反应物总物质的量之差 (B) 生成物与反应物中,气相物质的物质的量之差 (C) 生成物与反应物中,凝聚相物质的物质的量之差 (D) 生成物与反应物的总的热容差 答:(B)。ΔnRT一项来源于Δ(pV)一项,若假定气体是理想气体,在温度不变时Δ(pV)就等于ΔnRT 13. 在下述等式中,正确的是 ( ) (A) (B) (C) (D) 答:(C)。根据标准摩尔燃烧焓的定义,只有(C)是正确的。因为是助燃剂,其标准摩尔燃烧焓规定为零。的燃烧产物是,而不是。

14.在298 K时,石墨的标准摩尔生成焓的值 ( ) (A) 大于零 (B) 小于零 (C) 等于零 (D) 不能确定 答:(C)。根据标准摩尔生成焓的定义,稳定单质的标准摩尔生成焓规定为零。现在人为选定,将石墨作为碳的稳定单质。

15.在298 K和标准压力下,已知,,则金刚石的标准摩尔生成焓的值等于 ( ) (A) (B) (C) (D) 答:(D)。因为人为选定,将石墨作为碳的稳定单质,所以石墨的标准摩尔燃烧焓就是二氧化碳的标准摩尔生成焓,即。金刚石的标准摩尔燃烧焓就是金刚石燃烧为二氧化碳反应的摩尔反应焓变,即 利用标准摩尔生成焓计算标准摩尔反应焓变的公式,就可以得到金刚石的标准摩尔生成焓。

所以 或者,根据石墨变为金刚石的结晶状态变换反应 这个反应的标准摩尔反应焓变就等于金刚石的标准摩尔生成焓,利用两个物质的标准摩尔燃烧焓,就可以进行计算 16.某气体的状态方程为,b为大于零的常数,则下列结论正确的是 ( ) (A) 其焓H只是温度T的函数 (B) 其热力学能U只是温度T的函数 (C) 其热力学能和焓都只是温度T的函数 (D) 其热力学能和焓不仅与温度T有关,还与气体的体积Vm或压力p有关 答:(B)。可以从两种途径进行解释:
(1)
将已知方程改写为,与理想气体的状态方程对照,说明这种气体的自身体积不能忽略,但是分子间的引力与理想气体一样,是小到可以忽略不计的。那么,它的热力学能也只是温度的函数。因为根据焓的定义式,还会牵涉到体积,所以(C)不一定正确。

*(2)用数学的方法来证明。藉助于Maxwell方程(见第三章),可以导出一个重要关系式 对已知方程,求, 或者,在公式的双方,都乘以,得 等式左边消去相同项,并因为,所以得 这说明了,在温度不变时,改变体积或压力,热力学能保持不变,所以只有(B)是正确的。

五.习题解析 1.(1)一个系统的热力学能增加了100 kJ,从环境吸收了40 kJ的热,计算系统与环境的功的交换量。

(2)如果该系统在膨胀过程中对环境做了20 kJ的功,同时吸收了20 kJ的热,计算系统的热力学能变化值。

解:(1)根据热力学第一定律的数学表达式 即系统从环境得到了的功。

(2)根据热力学第一定律的数学表达式 系统吸收的热等于对环境做的功,保持系统本身的热力学能不变。

2.在300 K时,有10 mol理想气体,始态的压力为1 000 kPa。计算在等温下,下列三个过程所做的膨胀功。

(1)在100 kPa压力下体积胀大1 dm3 ;

(2)在100 kPa压力下,气体膨胀到终态压力也等于100 kPa ;

(3)等温可逆膨胀到气体的压力等于100 kPa 。

解:(1)这是等外压膨胀 (2)这也是等外压膨胀,只是始终态的体积不知道,要通过理想气体的状态方程得到。

(3)对于理想气体的等温可逆膨胀 3.在373 K的等温条件下,1 mol理想气体从始态体积25 dm3,分别按下列四个过程膨胀到终态体积为100 dm3。

(1)向真空膨胀;

(2)等温可逆膨胀;

(3)在外压恒定为气体终态压力下膨胀;

(4)先外压恒定为体积等于50 dm3 时气体的平衡压力下膨胀,当膨胀到50 dm3以后,再在外压等于100 dm3 时气体的平衡压力下膨胀。

分别计算各个过程中所做的膨胀功,这说明了什么问题? 解:(1)向真空膨胀,外压为零,所以 (2)理想气体的等温可逆膨胀 (3)等外压膨胀 (4)分两步的等外压膨胀 从计算说明了,功不是状态函数,是与过程有关的量。系统与环境的压力差越小,膨胀的次数越多,所做功的绝对值也越大。理想气体的等温可逆膨胀做功最大(指绝对值)。

4.在一个绝热的保温瓶中,将100 g处于0°C的冰,与100 g处于50°C的水混合在一起。试计算:
(1)系统达平衡时的温度;

(2)混合物中含水的质量。已知:冰的熔化热,水的平均等压比热容。

解:(1)首先要确定混合后,冰有没有全部融化。如果100 g处于0°C的冰,全部融化需吸收的热量为 100 g处于50°C的水降低到0°C,所能提供的热量为 显然,水降温所能提供的热量,不足以将所有的冰全部融化,所以最后的混合物还是处于0°C。

(2)设到达平衡时,有质量为的冰融化变为水,所吸的热刚好是100 g处于50°C的水冷却到0°C时所提供的,即 解得 所以混合物中含水的质量为:
5.1 mol理想气体在122 K等温的情况下,反抗恒定外压10.15 kPa,从10 dm3膨胀到终态体积100.0 dm3 ,试计算Q,W,ΔU和ΔH。

解:理想气体等温过程, 6.1 mol单原子分子的理想气体,初始状态为298 K,100 kPa,经历了的可逆变化过程后,体积为初始状态的2倍。请计算Q,W和ΔH。

解:因为,对于理想气体的物理变化过程,热力学能不变,则温度也不变,所以。

7.在以下各个过程中,分别判断Q,W,ΔU和ΔH是大于零、小于零,还是等于零。

(1) 理想气体的等温可逆膨胀;

(2) 理想气体的节流膨胀;

(3) 理想气体的绝热、反抗等外压膨胀;

(4) 1mol 实际气体的等容、升温过程;

(5) 在绝热刚性的容器中,H2(g)与Cl2(g)生成HCl(g) (设气体都为理想气体)。

解:(1)因为理想气体的热力学能和焓仅是温度的函数,所以在等温的过程中,。膨胀要对环境做功,所以,要保持温度不变,则必须吸热,所以。

(2)节流过程是等焓过程,所以。理想气体的焦-汤系数,经过节流膨胀后,气体温度不变,所以。节流过程是绝热过程,。因为,,所以。

(3)因为是绝热过程,,。等外压膨胀,系统对外做功,,所以。。

(4)等容过程,,。升温过程,热力学能增加,,故。

温度升高,体积不变,则压力也升高,。

(5)绝热刚性的容器,在不考虑非膨胀功时,相当于一个隔离系统,所以,,。这是个气体分子数不变的放热反应,系统的温度和压力升高 或 8.在300 K时,1 mol理想气体作等温可逆膨胀,起始压力为,终态体积为10 dm3。试计算该过程的Q,W,DU和 DH 。

解:
该过程是理想气体的等温过程,故。设气体的始态体积为V1, 9.在300 K时,有 (可视为理想气体,),压力为506.6 kPa。今在等温下分别按如下两种过程,膨胀至终态压力为202.6 kPa,① 等温可逆膨胀;
② 等温、等外压膨胀。分别计算这两种过程的Q,W,ΔU和ΔH。

解:① 理想气体的可逆变化过程,。

的物质的量为:
② 虽为不可逆过程,但还是等温过程,所以。

10. 在573 K时,将1 mol Ne(可视为理想气体)从1 000 kPa经绝热可逆膨胀到100 kPa。求Q,W,ΔU和ΔH。

解:因该过程为绝热可逆过程,故,。首先应计算出终态温度。根据理想气体的绝热可逆过程方程式 因为是理想气体,根据状态方程有,代入上式,可得 移项得 因为惰性气体是单原子分子气体,根据能量均分原理,所以。理想气体的,代入上式,得 解得 11.有的单原子分子的理想气体,始态为273 K,1 000 kPa。现分别经①等温可逆膨胀,②绝热可逆膨胀,③绝热等外压膨胀,到达相同的终态压力100 kPa。请分别计算终态温度、终态体积和所做的功。

解:
① 等温可逆膨胀, , ② 解法1:根据理想气体的绝热可逆过程方程式 因为是理想气体,根据状态方程有,代入上式,可得 移项得 因为惰性气体是单原子分子气体,根据能量均分原理,所以。理想气体的,代入上式,得 解得 解法2:运用绝热可逆过程方程式 ,即,对于单原子理想气体 ③ 对于理想气体的绝热不可逆过程,不能使用绝热可逆过程方程式。但是这个公式无论对绝热可逆还是绝热不可逆过程都能使用。所以对于绝热等外压膨胀,用公式求终态温度。因为 解得 从计算结果可知,等温可逆膨胀系统做的功最大,绝热可逆膨胀做的功比绝热不可逆膨胀做的功大,所以过程②的终态温度和体积都比过程③的小。到达相同终态压力时,绝热不可逆的介于等温可逆与绝热可逆之间。可以推而广之,若到达相同的终态体积,则绝热不可逆的也一定介于等温可逆与绝热可逆之间。

12.在373 K和101.325kPa压力时,有1 mol H2O(l) 可逆蒸发成同温、同压的H2O(g),已知H2O(l)的摩尔汽化焓。

(1)试计算该过程的,和,可以忽略液态水的体积。

(2)比较与的大小,并说明原因。

解:(1)
或 (2)。因为水在等温、等压的蒸发过程中,吸收的热量一部分用于对外做膨胀功,一部分用于克服分子间引力,增加分子间距离,提高热力学能。而仅用于克服分子间引力,增加分子间距离,所以的值要比大。

13.在300 K时,将1.0 mol的溶于过量的稀盐酸中。若反应分别在开口的烧杯和密封的容器中进行。哪种情况放热较多?计算两个热效应的差值。

解:反应的方程式为 在开口烧杯中进行时,是个等压过程,热效应为,在密封容器中进行时热效应为。后者因为不做膨胀功,所以放的热较多。两个热效应的差值为:
14.在373 K和101.325 kPa的条件下,将经:① 等温、等压可逆汽化;
②在恒温373K的真空箱中突然汽化,都变为同温、同压的。分别计算这两种过程的、、和的值。已知水的汽化热为,可以忽略液态水的体积。

解:① ② 因为与①题中的始、终态相同,所以状态函数的变量也相同,、的值与(1)中的相同。但是和不同,由于是真空蒸发,外压为零,所以 真空蒸发的热效应已不是等压热效应,,而可以等于等容热效应,所以 15.在298 K时,有酯化反应 (COOH)2(s)+2CH3OH(l)=(COOCH3)2(s)+2H2O(l),计算酯化反应的标准摩尔反应焓变。已知:,,。

解:利用标准摩尔燃烧焓来计算标准摩尔反应焓变 16.在298 K时,计算反应2C(s)+2H2(g)+O2(g)=CH3COOH(l) 的标准摩尔反应焓变。已知下列反应在298 K时的标准摩尔反应焓变分别为:
(1) CH3COOH(l)+2O2(g)=2CO2(g)+2H2O(l) , (2) C(s)+O2(g)=CO2(g) (3) H2(g)+O2(g)=H2O(l) 解:所求反应是由组成,根据Hess定律, 17.在298 K时,C2H5OH (l) 的标准摩尔燃烧焓为,CO2(g) 和H2O(l) 的标准摩尔生成焓分别为和,求 298 K 时,C2H5OH (l) 的标准摩尔生成焓。

解:C2H5OH (l)的燃烧反应为 由于在燃烧反应式中,是助燃剂,和是指定的燃烧最终产物,它们的标准摩尔燃烧焓都等于零,所以C2H5OH (l) 的标准摩尔燃烧焓,也就是该反应的标准摩尔反应焓变,即 。根据用标准摩尔生成焓计算标准摩尔反应焓变的公式,式中C2H5OH (l) 的标准摩尔生成焓是唯一的未知数,即可求出。

18. 已知 298 K 时,CH4(g),CO2(g),H2O(l) 的标准摩尔生成焓分别为,和,请计算298 K时CH4(g)的标准摩尔燃烧焓。

解:CH4(g)的燃烧反应为,CH4(g)的标准摩尔燃烧焓,就等于该燃烧反应的标准摩尔反应焓变。根据用标准摩尔生成焓计算标准摩尔反应焓变的公式, 19. 使用弹式量热计,测定正庚烷的标准摩尔燃烧焓。准确称取正庚烷样品0.50 g ,放入平均温度为298 K的弹式量热计中,充入氧气,并用电阻丝引燃。由于正庚烷的燃烧,使温度上升,已知弹式量热计的本身及附件的平均热容为。试计算在298 K 时,正庚烷的标准摩尔燃烧焓。已知正庚烷的摩尔质量为 100.2 。

解:在弹式量热计中测定的热是等容热,0.5 g正庚烷燃烧后放出的等容热为:
正庚烷的燃烧反应为:
1 mol正庚烷的等容燃烧热,就等于摩尔热力学能的变化, 20.在标准压力和298 K时,与的反应为。设参与反应的物质均可以作为理想气体处理,已知,它们的标准等压摩尔热容(设与温度无关)分别为:,,。试计算:
(1)在298 K时,标准摩尔反应焓变,和热力学能变化;

(2)在498 K时的标准摩尔反应焓变。

解:(1)根据反应方程式,用已知的标准摩尔生成焓计算反应的标准摩尔反应焓变。因为稳定单质的标准摩尔生成焓都等于零,所以 (2)根据反应方程式,标准等压摩尔热容的差值为 第三章 热力学第二定律 一.基本要求 1.了解自发变化的共同特征,熟悉热力学第二定律的文字和数学表述方式。

2.掌握Carnot循环中,各步骤的功和热的计算,了解如何从Carnot循环引出熵这个状态函数。

3.理解Clausius不等式和熵增加原理的重要性,会熟练计算一些常见过程如:等温、等压、等容和都改变过程的熵变,学会将一些简单的不可逆过程设计成始、终态相同的可逆过程。

4.了解熵的本质和热力学第三定律的意义,会使用标准摩尔熵值来计算化学变化的熵变。

5.理解为什么要定义Helmholtz自由能和Gibbs自由能,这两个新函数有什么用处?熟练掌握一些简单过程的和的计算。

6.掌握常用的三个热力学判据的使用条件,熟练使用热力学数据表来计算化学变化的,和,理解如何利用熵判据和Gibbs自由能判据来判断变化的方向和限度。

7.了解热力学的四个基本公式的由来,记住每个热力学函数的特征变量,会利用的表示式计算温度和压力对Gibbs自由能的影响。

二.把握学习要点的建议 自发过程的共同特征是不可逆性,是单向的。自发过程一旦发生,就不需要环境帮助,可以自己进行,并能对环境做功。但是,热力学判据只提供自发变化的趋势,如何将这个趋势变为现实,还需要提供必要的条件。例如,处于高山上的水有自发向低处流的趋势,但是如果有一个大坝拦住,它还是流不下来。不过,一旦将大坝的闸门打开,水就会自动一泻千里,人们可以利用这个能量来发电。又如,氢气和氧气反应生成水是个自发过程,但是,将氢气和氧气封在一个试管内是看不到有水生成的,不过,一旦有一个火星,氢气和氧气的混合物可以在瞬间化合生成水,人们可以利用这个自发反应得到热能或电能。自发过程不是不能逆向进行,只是它自己不会自动逆向进行,要它逆向进行,环境必须对它做功。例如,用水泵可以将水从低处打到高处,用电可以将水分解成氢气和氧气。所以学习自发过程的重要性在于如何利用自发过程为人类做功,而不要拘泥于自发过程的定义。

热力学第二定律就是概括了所有自发的、不可逆过程的经验定律,通过本章的学习,原则上解决了判断相变化和化学变化的自发变化的方向和限度的问题,完成了化学热力学的最基本的任务。所以,学好本章是十分重要的。

通过学习Carnot循环,一方面要熟练不同过程中功和热的计算,另一方面要理解热机效率总是小于1的原因。了解如何从Carnot循环导出熵函数,以及了解Carnot定理及其推论与热力学第二定律的联系。

Clausius不等式就是热力学第二定律的数学表达式,从这个不等式可以引出熵判据,并从熵判据衍生出Helmholtz自由能判据和Gibbs自由能判据,原则上完成了化学热力学判断变化方向和限度的主要任务。

从Carnot定理引入了一个不等号,,通过熵增加原理引出了熵判据。但必须搞清楚,用绝热过程的熵变只能判断过程的可逆与否,而只有用隔离系统的熵变才能判断过程的可逆与否及自发与否。要计算隔离系统的熵变,必须知道如何计算环境的熵变。

在计算熵变时,一定要用可逆过程的热效应。如果实际过程是一个不可逆过程,则要设计始、终态相同的可逆过程,所以要掌握几种设计可逆过程的方法。例如,如何将不可逆相变,设计成可逆地绕到可逆相变点(如熔点、沸点或饱和蒸汽压点)的可逆过程,并能熟练地掌握可逆过程中,和的计算。

不一定完整地了解熵的本质和热力学第三定律(因为本教材没有介绍统计热力学),只需要了解,熵是系统的混乱度的一种量度,凡是混乱度增加的过程都是自发过程。由于热力学能的绝对值无法计算,所以使得与热力学能有联系的其他函数如和的绝对值也无法计算,所以,只能计算它们的变化值。在使用这些函数时,都要加上“”的符号,即,,和。原则上熵的绝对值也是不知道的,但是,热力学第三定律规定了:在0 K时,完整晶体的熵等于零这个相对标准,由此而得到的熵值称为规定熵。在298 K时的常见物质的规定熵,即标准摩尔熵值,可以从热力学数据表上查阅,并可以用来计算化学反应的熵变。

定义新函数的出发点就是为了使用方便。在用熵作为判据时,既要利用可逆过程的热效应计算系统的熵变,又要计算环境的熵变,这很不方便。而平时实验是在等温、等容的条件下进行(较少),或在等温、等压的条件下进行(绝大多数),所以定义了Helmholtz自由能和Gibbs自由能这两个新函数,希望利用系统本身的性质作为判据,显然,Gibbs自由能的用处更广。既然是定义的函数,说明它实际上是不存在的,所以只有在特定的条件下才有一定的物理意义。

化学热力学之所以能判断变化的方向和限度,主要是利用判据,熵判据是最根本的,而Helmholtz自由能和Gibbs自由能判据是在熵判据的基础上衍生出来的。今后Gibbs自由能判据用得最多,因为大部分化学反应实验都是在等温、等压和不做非膨胀功的条件下进行的。在使用判据时,必须满足判据所需要的适用条件。

四个热力学基本公式的导出,主要是通过热力学第一定律和热力学第二定律的联合公式,以及的定义式,它们与第一定律的适用条件一样,只适用于恒定组成的均相封闭系统,并且还引入了不做非膨胀功的限制条件。从这四个基本公式,可以知道每个热力学函数的特征变量,这在今后定义化学势时很有用。四个基本公式中,公式在今后将用得最多,必须记住。

至于Maxwell方程,它主要用在求算热力学函数与之间的变化关系,把实验可测量(如)去替代实验不可测量(如熵),或在做证明题时,知道如何进行偏微分公式的变换。对于非化学专业的学生,这部分内容本教材已删除了,免得陷在偏微分方程中,感到热力学是如此的难学而失去信心,其实这部分并非是化学热力学的主要研究任务。

初学者对热力学的基本概念不容易掌握,课听懂了,书看懂了,但是碰到具体问题还是不会判断。所以,在学完热力学第一和第二定律之后,最好要总结一下各种热力学函数变量的计算,讨论一些容易混淆的问题,或精选一些选择题,搞一次抢答竞赛,活跃一下学习气氛,便于在愉快的气氛中,理解和巩固热力学的基本概念。

三.思考题参考答案 1.自发过程一定是不可逆的,所以不可逆过程一定是自发的。这说法对吗? 答:
前半句是对的,但后半句是错的。因为不可逆过程不一定是自发的,如不可逆压缩过程就是一个不自发的过程。

2.空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与热力学第二定律矛盾呢? 答:
不矛盾。Claususe说的是:“不可能把热从低温物体传到高温物体,而不引起其他变化”。而冷冻机系列,把热从低温物体传到了高温物体,环境做了电功,却得到了热。而热变为功是个不可逆过程,所以环境发生了变化。

3.能否说系统达平衡时熵值最大,Gibbs自由能最小? 答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大。等温、等压、不做非膨胀功,系统达平衡时,Gibbs自由能最小。也就是说,使用判据时一定要符合判据所要求的适用条件。

4.某系统从始态出发,经一个绝热不可逆过程到达终态。为了计算熵值,能否设计一个绝热可逆过程来计算? 答:不可能。若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同。反之,若有相同的终态,两个过程绝不会有相同的始态。所以只有设计一个除绝热以外的其他可逆过程,才能有相同的始、终态。

5.对处于绝热钢瓶中的气体,进行不可逆压缩,这过程的熵变一定大于零,这说法对吗? 答:对。因为是绝热系统,凡是进行一个不可逆过程,熵值一定增大,这就是熵增加原理。处于绝热钢瓶中的气体,虽然被压缩后体积会减小,但是它的温度会升高,总的熵值一定增大。

6.相变过程的熵变,可以用公式来计算,这说法对吗? 答:不对,至少不完整。一定要强调是等温、等压可逆相变,是可逆相变时焓的变化值(),是可逆相变的温度。

7.是否恒大于? 答:对气体和绝大部分物质是如此。但有例外,4摄氏度时的水,它的等于。

8.将压力为101.3 kPa,温度为268.2 K的过冷液态苯,凝固成同温、同压的固态苯。已知苯的凝固点温度为278.7 K,如何设计可逆过程? 答:可以用等压、可逆变温的方法,绕到苯的凝固点278.7 K,设计的可逆过程如下:
分别计算(1),(2)和(3),三个可逆过程的热力学函数的变化值,加和就等于过冷液态苯凝固这个不可逆过程的热力学函数的变化值。用的就是状态函数的性质:异途同归,值变相等。

9.在下列过程中,Q ,W,ΔU,ΔH,ΔS,ΔG和ΔA的数值,哪些等于零?哪些函数的值相等? (1) 理想气体真空膨胀 (2) 实际气体绝热可逆膨胀 (3) 水在正常凝固点时结成冰 (4) 理想气体等温可逆膨胀 (5) H2(g)和O2(g)在绝热钢瓶中生成水 (6) 在等温、等压且不做非膨胀功的条件下,下列化学反应达成平衡 答:(1)
, (2)
(3)
(4)
(5)
(6)
,, 10. 298 K时,一个箱子的一边是1 mol N2 (100 kPa),另一边是2 mol N2 (200 kPa ),中间用隔板分开。问在298 K时,抽去隔板后的熵变值如何计算? 答:设想隔板可以活动,平衡时隔板两边气体的压力均为150 kPa。在等温、等压下,相同的理想气体混合时的熵变等于零,即。只要计算气体从始态压力到终态压力的熵变, 11. 指出下列理想气体,在等温混合过程中的熵变计算式。

(1) (2) (3) 答:
(1) 。因为相同气体混合,总体积没变,相当于每个气体的体积都缩小了一半。

(2) 。因为理想气体不考虑分子自身的体积,两种气体的活动范围都没有改变。

(3) 。因为同类气体混合,体积是原来体积的加和,气体的活动范围都没有改变,仅是加和而已。

12.四个热力学基本公式适用的条件是什么? 是否一定要可逆过程? 答:
适用于组成不变的均相封闭系统,不作非膨胀功的一切过程。不一定是可逆过程。因为在公式推导时,虽然用了的关系式,这公式只有对可逆过程成立,但是由于基本公式中计算的是状态函数的变化量,对于不可逆过程,可以设计一个始终态相同的可逆过程进行运算。

四.概念题参考答案 1.理想气体在等温条件下反抗恒定外压膨胀,该变化过程中系统的熵变及环境的熵变应为:
( )
(A) >0,=0 (B)
<0,=0 (C) >0,<0 (D)
<0,>0 答:(C)。理想气体等温膨胀,体积增加,熵增加,但要从环境吸热,故环境的熵减少。

2.在绝热条件下,用大于气缸内的压力迅速推动活塞压缩气体,气体的熵变:( ) (A) 大于零 (B) 小于零 (C) 等于零 (D) 不能确定 答:(A)。封闭系统的绝热不可逆过程,熵增加,这就是熵增加原理。因为气体的体积虽然变小了,但是它的温度升高了,总的熵一定是增加的。

3.和在绝热钢瓶中反应生成水的过程( ) (A) ΔH = 0 (B) ΔU = 0 (C) ΔS = 0 (D) ΔG = 0 答:(B)。因为钢瓶是恒容的,并与外界无功和热的交换,所以能量守衡,ΔU = 0。

4.在273.15 K和101 325 Pa条件下,水凝结为冰,系统的下列热力学量中,何者一定为零? ( ) (A) ΔU (B) ΔH (C) ΔS (D) ΔG 答:(D)。等温、等压、不作非膨胀功的可逆相变,Gibbs自由能等于零。

5.一定量的理想气体向真空作绝热膨胀,体积从变到,则熵变的计算公式为 ( )
(A)
(B)
(C)
(D)无法计算 答:(B)。虽然真空绝热膨胀是一个不可逆过程,但是理想气体的温度不变,可以设计一个始、终态相同的等温可逆膨胀过程,用(B)式来计算熵变。

6.在对和的混合气体进行绝热可逆压缩,系统的热力学函数变化值在下列结论中正确的是:
( ) (A) ΔU = 0 (B) ΔA = 0 (C) ΔS = 0 (D) ΔG = 0 答:(C)。绝热可逆过程是恒熵过程,由于QR= 0,所以ΔS = 0。

7. 1 mol 单原子分子理想气体,温度由T1变到T2时,等压可逆过程,系统的熵变为,等容可逆过程,系统的熵变为,两着之比等于:( ) (A) (B) (C) (D) 答:(D)。等压、变温可逆过程,,等容、变温可逆过程,。现在温度区间相同,单原子分子理想气体的,,所以,,相当于摩尔等压热容与摩尔等容热容之比。

8.纯的在 373 K,的条件下,可逆汽化为同温同压的,热力学函数的变量为 ΔU1,ΔH1和 ΔG1;
现把纯的(温度、压力同上),放在373 K 的恒温真空箱中,控制体积,使系统终态的蒸气压也为,这时热力学函数变量为ΔU2,ΔH2和 ΔG2。这两组热力学函数的关系为:
( ) (A) ΔU1> ΔU2, ΔH1> ΔH2, ΔG1> ΔG2 (B) ΔU1< ΔU2, ΔH1< ΔH2, ΔG1< ΔG2 (C) ΔU1= ΔU2, ΔH1= ΔH2, ΔG1= ΔG2 (D) ΔU1= ΔU2, ΔH1> ΔH2, ΔG1= ΔG2 答:(C)。系统的始态与终态都相同,所有热力学状态函数的变量也都相同,与变化途径无关。

9. 298 K时,1 mol 理想气体等温可逆膨胀,压力从1 000 kPa变到100 kPa,系统的Gibbs自由能的变化值为 ( ) (A) (B) (C) (D) 答:(D)。理想气体等温可逆膨胀, 10.对于不做非膨胀功的隔离系统,熵判据为:
( ) (A)
(B)
(C)
(D)
答:(D)。在不做非膨胀功时,保持系统的U,V不变,即膨胀功等于零,,这就是一个隔离系统。

11.甲苯在时的正常沸点为110℃,现在将1 mol甲苯放入与110℃的热源接触的真空容器中,控制容器的容积,使甲苯迅速气化为同温、同压的蒸气。如下描述该过程的热力学变量正确的是 ( )
(A)
(B)
(C)
(D)
答:(D)。甲苯的始、终态与等温、等压可逆蒸发的始终态完全相同,所以状态函数的变化量也相同。对于等温、等压可逆相变,。

12. 某实际气体的状态方程为,其中为大于零的常数,该气体经等温可逆膨胀后,其热力学能将 ( ) (A) 不变 (B) 增大 (C) 减少 (D) 不能确定 答:(A)。可以将该实际气体的状态方程改写为,与理想气体的状态方程相比,只对体积项进行了校正,说明该实际气体分子本身所占的体积不能忽略,但对压力项没有进行校正,说明该气体分子之间的相互作用可以忽略,这一点与理想气体相同,所以在膨胀时,不需克服分子间的引力,所以在等温膨胀时,热力学能保持不变。这种气体作绝热真空膨胀时,温度也不会改变。

13.在封闭系统中,若某过程的,应满足的条件是( )
(A)等温、可逆过程 (B)等容、可逆过程 (C)等温、等压、可逆过程 (D)等温、等容、可逆过程 答:(A)。在等温、可逆过程中,Helmholtz自由能的变化值就等于对环境做的最大功,包括膨胀功和非膨胀功,这就是将Helmholtz自由能称为功函的原因。在定义Helmholtz自由能时,只引入了等温的条件。

14. 热力学第三定律也可以表示为 ( ) (A) 在0 K时,任何晶体的熵等于零 (B) 在0 K时,任何完整晶体的熵等于零 (C) 在0 ℃时,任何晶体的熵等于零 (D)在0 ℃时,任何完整晶体的熵等于零 答:(B)。完整晶体通常只有一种排列方式,根据描述熵的本质的Boltzmann公式,,可得到,在0 K时,完整晶体的,则熵等于零。

15.纯在标准压力和正常沸点时,等温、等压可逆汽化,则( ) (A) ΔvapU$=ΔvapH$,ΔvapA$=ΔvapG$,ΔvapS$> 0 (B) ΔvapU$<ΔvapH$,ΔvapA$<ΔvapG$,ΔvapS$> 0 (C) ΔvapU$>ΔvapH$,ΔvapA$>ΔvapG$,ΔvapS$< 0 (D) ΔvapU$<ΔvapH$,ΔvapA$<ΔvapG$,ΔvapS$< 0 答:(B)。任何液体在汽化时,其ΔvapS$> 0。在正常沸点等温、等压可逆汽化时,ΔvapG$=0,液体等压变为气体时,要对环境做功,所以ΔvapA$<0,ΔvapU$<ΔvapH$。

16.在 -10℃、101.325kPa下,1mol水凝结成冰的过程中,下列哪个公式仍适用 ( )
(A) ∆U = T∆S (B) (C) ∆H = T∆S + V∆p (D) ∆GT,p = 0 答:(B)。过冷水结冰是一个不可逆过程,但是温度保持不变,根据Gibbs自由能的定义式,在等温时,,这个公式总是可以使用的。只是和的数值要通过设计可逆过程进行计算。

五.习题解析 1.热机的低温热源一般是空气或水,平均温度设为293 K。为了提高热机的效率,只有尽可能提高高温热源的温度。如果希望可逆热机的效率能达到60%,试计算这时高温热源的温度。高温热源一般是加压水蒸气,这时水蒸气将处于什么状态?已知水的临界温度为647 K。

解:根据理想的Carnot热机,可逆热机效率与两个热源温度的关系式为 解得高温热源的温度 这时加压水蒸气的温度已远远超过水的临界温度,水蒸气处于远超临界状态,压力很高,需要耐压性能很好的锅炉。事实上,实用的热机都是不可逆的,就是有这样的高温热源,实用热机的效率也远低于60%。

2.①5 mol双原子分子理想气体,在等容的条件下,由448 K冷却到298 K;
② 3 mol单原子分子理想气体,在等压条件下由300 K加热到600 K,试计算这两个过程的DS。

解:① 该过程系等容、变温过程,双原子分子理想气体的,所以 ② 该过程系等压、变温过程,单原子分子理想气体的 3.某蛋白质在323 K时变性,并达到平衡状态,即:天然蛋白质变性蛋白质,已知该变性过程的摩尔焓变,,求该反应的摩尔熵变。。

解:
因为已达到平衡状态,可以认为变性过程的焓变就是可逆热效应, 4.1 mol理想气体在等温下,分别经历如下两个过程:① 可逆膨胀过程;
② 向真空膨胀过程,终态体积都是始态体积的10倍。分别计算这两个过程系统的熵变。

解:① 因该过程系理想气体等温可逆膨胀过程,所以:
② 虽然与(1)的膨胀方式不同,但其始、终态相同,熵是状态函数,所以该过程的熵变与①的相同,即。

5.有2 mol单原子分子理想气体,由始态500 kPa,323 K 加热到终态1 000 kPa,373 K。试计算此气体的熵变。

解:这是一个p,V,T都改变的过程,计算熵变要分两步进行。第一步,等温可逆改变压力的过程,第二步,等压可逆改变温度的过程,熵变的计算式为 6.在300 K时,有物质的量为n的单原子分子理想气体,从始态100 kPa,122 dm3,反抗50 kPa的外压,等温膨胀到50 kPa。试计算:
(1),,终态体积V2,以及如果过程是可逆过程的热和功。

(2)如果过程是不可逆过程的热和功。

(3),和。

解:(1)
这是理想气体的等温膨胀,所以 ,。

假设理想气体进行等温可逆膨胀至终态,则 (2)理想气体进行等温、等外压膨胀至终态 (3)计算系统的熵变,用假设的可逆过程的热温商计算 计算环境的熵变,用系统实际不可逆过程的热的负值来计算,因为环境是个大热源,对于系统是不可逆的热效应,但是对于环境还是可以认为是可逆的。

7.有一个绝热的刚性容器,中间用隔板将容器分为两个部分,分别充以不同温度的N2 (g)和O2 (g),如图所示。N2 (g)和O2 (g)皆可视为理想气体。

(1) 设中间隔板是导热的,并能滑动以保持两边的压力相等。计算整个系统达到热平衡时的ΔS。

(2) 达到热平衡后,将隔板抽去,求系统的混合熵变ΔmixS。

解:(1) 首先要求出达到热平衡时的温度T 。因为两种气体的总体积未变,又是绝热容器,所以,,则。已知N2(g)的温度为,O2 (g)的温度为,达到热平衡时,有 因为两种气体都是双原子分子理想气体,等容摩尔热容相同,物质的量也相等,所以有:
解得 其实,对于物质的量相等、等容摩尔热容也相同的两种不同温度的气体,达热平衡时的温度就等于两者温度的平均值,。

设想这个热传导是在等压可逆的情况下进行的,所以 (2) 达热平衡后抽去隔板,两种气体的体积都扩大一倍, 8.人体活动和生理过程是在恒压下做广义电功的过程。问在298 K时,1mol 葡萄糖最多能提供多少能量来供给人体活动和维持生命之用。

已知在298 K时:葡萄糖的标准摩尔燃烧焓,, , , 解:要计算最大的广义电功,实际是计算1 mol葡萄糖在燃烧时的摩尔反应Gibbs自由能的变化值。葡萄糖的燃烧反应为 9.某化学反应,若在298 K和标准压力下进行,放热 40.00 kJ,若使该反应通过可逆电池来完成,在与化学反应的始、终态相同时,则吸热 4.00 kJ。试计算:
(1) 该化学反应的。

(2) 当该反应自发进行,不做电功时的环境熵变,及隔离系统的熵变。

(3) 计算系统可能做的最大电功。

解:
(1) 化学反应能自发进行,说明是一个不可逆过程,不能用它的热效应来计算熵变,要利用始终态相同的可逆电池的热效应来计算熵变,所以 (2) 系统在化学反应中的不可逆放热,环境可以按可逆的方式来接收,所以 (3) 在可逆电池中,系统可能做的最大电功在数值上就等于,所以 10.在 298 K的等温情况下,两个容器中间有旋塞连通,开始时一边放0.2 mol,压力为 20 kPa,另一边放0.8 mol ,压力为 80 kPa,打开旋塞后,两气体相互混合,设气体均为理想气体。试计算:
(1) 终态时容器中的压力。

(2) 混合过程的Q,W,,和。

(3) 如果在等温下,可逆地使气体分离,都恢复原状,计算过程的Q和W 。

解:
(1) 首先计算旋塞两边容器的体积,然后得到两个容器的总体积,就能计算最终混合后的压力 (2) 理想气体的等温混合过程, ,,混合时没有热效应,,所以。

事实上,将两种气体看作系统,没有对环境做功,所以。

(3) , 11. 1mol 理想气体,在273 K等温可逆地从1 000 kPa膨胀到100 kPa,试计算此过程的Q,W以及气体的ΔU,ΔH,ΔS,ΔG和ΔA 。

解:
理想气体等温可逆膨胀,ΔU = 0 ,ΔH =0, 12.在300 K时,将1 mol理想气体,压力从100 kPa经等温可逆压缩到1 000 kPa,计算Q,W,DU,DH,DS,DA和DG。

解:
理想气体的等温物理变化,, 13.1mol 单原子分子理想气体,始态温度为273 K,压力为p。分别经下列三种可逆变化:① 恒温下压力加倍;
② 恒压下体积加倍;
③ 恒容下压力加倍。分别计算其Gibbs自由能的变化值。假定在273 K和标准压力下,该气体的摩尔熵。

解:
① 这是一个等温改变压力的可逆过程, ② 在恒压下体积加倍,则温度也加倍,,根据Gibbs自由能的定义式, ③ 恒容下压力加倍, 所以 14. 在 373 K 及101.325 kPa 条件下,将2 mol 水可逆蒸发为同温、同压的蒸气。计算此过程的Q,W,,和。已知水的摩尔汽化焓。假设水气可作为理想气体,忽略液态水的体积。

解:
15.在一玻璃球中封入1 mol H2O(l),压力为101.3 kPa,温度为373 K。将玻璃球放入一个真空容器中,真空容器恰好能容纳 1mol 101.3 kPa,373 K的H2O(g)。设法将小球击破,水全部汽化成101.3 kPa,373 K的水蒸气。计算Q,W,ΔU,ΔH,ΔS,ΔG,ΔA。根据计算结果说明,这一过程是自发的吗?可以用哪一个热力学性质作为判据?已知水在101.3 kPa,373 K 时的摩尔汽化焓。。

解:
H2O(l) 向真空汽化, 这是一个与可逆相变始终态相同的过程,所以 或 该过程是恒温、恒容过程,故可用ΔA 作判据,因为ΔA < 0,故该过程是自发的不可逆过程。当然,也可以用作为判据, 所以,水的真空蒸发过程是自发的不可逆过程。

16.1 mol理想气体,在122 K等温的情况下反抗恒定外压,从10 dm3膨胀到终态。已知在该过程中,系统的熵变为,求该膨胀过程系统反抗的外压,终态的体积V2,并计算:ΔU,ΔH,ΔA,ΔG,环境熵变和孤立系统熵变。

解:因为是理想气体的等温物理变化,所以,,。

已知熵变的值可以解出终态的体积 解得 17. 在-5℃和标准压力下,1 mol过冷液体苯凝固为同温、同压的固体苯,计算该过程的ΔS 和ΔG。已知 -5℃ 时,固态苯和液态苯的饱和蒸气压分别为 2.25 kPa 和 2.64 kPa,在该条件下,苯的摩尔熔化焓。

解:过冷液体的凝固是一个不可逆过程,要设计一个始、终态相同的可逆过程,才能计算ΔS 和ΔG。保持温度都为-5℃,设计的可逆过程有如下5步 构成:
第(2)步和第(4)步,是在饱和蒸气压的条件下,恒温、恒压的可逆相变,所以。因为液体和固体的可压缩性较小,受压力影响不大,它们的摩尔体积差别不大,可近似认为。所以 18.苯的正常沸点为 353 K,摩尔气化焓ΔvapHm= 30.77 kJ×mol-1。今在 353 K和标准压力下,将1mol 液态苯向真空等温汽化为同温同压的苯蒸气(设为理想气体)。试计算:
(1) 该过程中苯吸收的热量Q和做的功W 。

(2) 苯的摩尔气化Gibbs自由能ΔvapGm和摩尔气化熵ΔvapSm 。

(3) 环境的熵变。

(4) 使用哪种判据,可以判别上述过程可逆与否?并用计算结果进行判别。

解:
(1) 真空汽化 W = 0 (2) 设液态苯在同温、同压下可逆蒸发为气,这是可逆相变, (3) 系统的不可逆热效应,对环境来说可以看作是可逆的 (4) 用熵判据来判断过程的可逆性 所以,过程为不可逆的自发过程。

19.在298 K,101.3 kPa条件下,与CuSO4溶液的置换反应在可逆电池中进行,做出最大电功200 kJ,放热 6 kJ。求该反应的ΔrU,ΔrH,ΔrA,ΔrS和ΔrG(设反应前后的体积变化可忽略不计)。

解:
在等温、等压的条件下,对外所做的可逆电功就等于系统Gibbs自由能的下降值, 由于反应中无气体物质参与,所以, 由于反应中无气体物质参与, 20.在温度为298 K的恒温浴中,某2 mol理想气体发生不可逆膨胀过程。过程中系统对环境做功3.5 kJ,到达终态时系统的体积为始态的10倍。求此过程的Q,W及气体的ΔU,ΔH,ΔS,ΔG和ΔA。

解:因为在恒温浴中进行,所以理想气体的 ,。已知, 设计一个始、终态相同的可逆过程, 21.在101.3 kPa和373 K下,把1mol水蒸气可逆压缩为液体,计算Q,W,DU,DH,DA,DG和DS。已知在373 K和101.3 kPa下,水的摩尔汽化焓。。气体可以作为理想气体处理,忽略液体的体积。

解:
这是处在可逆相变点上的等温、等压可逆相变,所以 22.计算下列反应在298 K和标准压力下的熵变 已知在298 K和标准压力下,各物质的标准摩尔熵分别为:
, , 解:对于化学反应的标准摩尔熵变 23.在600 K,100 kPa压力下,生石膏的脱水反应为 试计算该反应进度为1 mol时的和。已知各物质在298.15 K,100 kPa时的热力学数据为:
物质 设的值在298 K—600 K的温度区间内,是与温度无关的常数,气体可按理想气体处理,在气体与凝聚态共存时,凝聚态的体积可忽略不计。

解:
因为是等压反应, 24.已知甲苯在正常沸点383 K时的摩尔气化焓为,设气体为理想气体,凝聚态的体积与气体体积相比可忽略不计。

(1)1 mol甲苯在正常沸点383 K,可逆蒸发为同温、同压(101.325 kPa)的气,计算该过程的和。

(2)如果是向真空蒸发,变为同温同压的气,求和。

(3)请用熵判据,通过计算说明真空蒸发的可逆性和自发性。

解:
(1)因为是在正常沸点时的两相平衡,所以 或 (2)
因为与(1)的始终态相同,所以,所有的状态函数的变量都与(1)中的相等,只是真空蒸发,, (3)
因为,所以真空蒸发是不可逆的过程,也是自发的过程。

第四章 多组分系统热力学 一.基本要求 1.了解混合物的特点,熟悉多组分系统各种组成的表示法。

2.掌握偏摩尔量的定义和偏摩尔量的加和公式及其应用。

3.掌握化学势的狭义定义,知道化学势在相变和化学变化中的应用。

4.掌握理想气体化学势的表示式,了解气体标准态的含义。

5.掌握Roult定律和Henry定律的含义及用处,了解它们的适用条件和不同之处。

6.了解理想液态混合物的通性及化学势的表示方法,了解理想稀溶液中各组分化学势的表示法。

7.了解相对活度的概念,知道如何描述溶剂的非理想程度,和如何描述溶质在用不同浓度表示时的非理想程度。

8.掌握稀溶液的依数性,会利用依数性来计算未知物的摩尔质量。

二.把握学习要点的建议 混合物是多组分系统的一种特殊形式,各组分平等共存,服从同一个经验规律(即Rault定律),所以处理起来比较简单。一般是先掌握对混合物的处理方法,然后再扩展到对溶剂和溶质的处理方法。先是对理想状态,然后扩展到对非理想的状态。

偏摩尔量的定义和化学势的定义有相似之处,都是热力学的容量性质在一定的条件下,对任一物质B的物质的量的偏微分。但两者有本质的区别,主要体现在“一定的条件下”,即偏微分的下标上,这一点初学者很容易混淆,所以在学习时一定要注意它们的区别。偏摩尔量的下标是等温、等压和保持除B以外的其他组成不变()。化学势的下标是保持热力学函数的两个特征变量和保持除B以外的其他组成不变。唯独偏摩尔ibbs自G由能与狭义化学势是一回事,因为Gibbs自由能的特征变量是,偏摩尔量的下标与化学势定义式的下标刚好相同。

多组分系统的热力学基本公式,比以前恒定组成封闭系统的基本公式,在最后多了一项,这项表示某个组成B的物质的量发生改变时所引起的相应热力学函数值的改变。最后一项中化学势是常数,说明的改变并不是随意的,在数量一定的系统中只发生了的变化,或在数量很大的系统中改变了1 mol,这样才能维持不变。

单组分理想气体的化学势是温度和压力的函数,即。等式右边的第一项,是当时的化学势,它仅是温度的函数,这个状态就是气体的标准态,即气体的压力等于标准压力时而还能作为理想气体处理的那个状态。第二项是,是理想气体的实际压力。记住了这个化学势的表示式,其余气体的化学势表示式只要在这基础上略作修改即可。例如,混合理想气体中B组分的化学势,只要将压力改为B物质的分压即可;
如果是非理想气体,则将压力改为逸度也就行了。掌握化学势的表示式,是因为今后在导出化学反应等温式、标准平衡常数的定义式等都要用到化学势的表示式,这样才能完成热力学的判断化学变化的方向和限度的任务。

稀溶液与混合物不同,有溶剂和溶质之分。溶剂服从Rault定律,由此可以计算溶剂的分压和由于非挥发性溶质的加入使溶剂蒸气压降低的分数,溶剂蒸气压的降低分数与溶质的摩尔分数成正比。正由于溶剂蒸气压降低这个原因,才出现了溶液凝固点降低、沸点升高和渗透现象等一系列依数性质。

在稀溶液中表示溶质的化学势时,当溶质用不同浓度表示时,要选择不同的标准态,而且这些标准态都是假想的,初学时对这个问题会产生疑问。其实对这个问题不必过于强调,通常不会去计算标准态的化学势,而是选择了共同的标准态以后,在求热力学函数的变量时,可以将这些相同的标准态销掉,标准态仅仅是共同的参考状态而已。需要搞清楚的是:在稀溶液中,溶剂和溶质的化学势的表示式是不同的,它们的标准态也是不同的,要分别进行计算。溶质的化学势在用不同浓度表示时,化学势的表示式是不同的,所选择的标准态也是不同的,但是,最后得到的化学势的数值是相同的,化学势的数值不会因为选择的标准态不同而不同。

在稀溶液中,产生依数性的本质是由于非挥发性溶质的加入,减少了溶剂分子占据的表面,降低了溶剂的蒸汽压。依数性只与粒子的数量有关,而与粒子的性质无关。测定凝固点下降值、沸点升高值或渗透压等,主要用来计算溶质的摩尔质量。而有一点需要弄清楚的是:凝固点和沸点仍是指溶液中溶剂的凝固点和沸点,析出的固体是纯溶剂的固体(如冰,其中不含溶质),蒸气也是纯溶剂的蒸气,只有当溶剂的蒸气压等于大气压力时,溶液才会沸腾。

对于非理想的溶液,只要用相对活度来代替相应的浓度,则化学势的表示式基本保持不变。由于绝对活度用得较少,所以本教材只引入了相对活度的概念。如果溶质是非电解质,当活度因子趋向于1时,活度与浓度在数值上相同。但是,如果溶质是电解质,就是活度因子都趋向于1,而活度与浓度在数值上也不可能相同,这就为今后学习电解质溶液的活度留一个伏笔。

三.思考题参考答案 1.偏摩尔量与摩尔量有什么异同? 答:对于单组分系统,只有摩尔量,而没有偏摩尔量。或者说,在单组分系统中,偏摩尔量就等于摩尔量。只有对多组分系统,物质的量也成为系统的变量,当某物质的量发生改变时,也会引起系统的容量性质的改变,这时才引入了偏摩尔量的概念。系统总的容量性质要用偏摩尔量的加和公式计算,而不能用纯的物质的摩尔量乘以物质的量来计算。

2.什么是化学势?与偏摩尔量有什么区别? 答:化学势的广义定义是:保持某热力学函数的两个特征变量和除B以外的其他组分不变时,该热力学函数对B物质的量求偏微分。通常所说的化学势是指它的狭意定义,即偏摩尔Gibbs自由能,即在等温、等压下,保持除B以外的其它物质组成不变时,Gibbs自由能随B物质的量的改变的变化率称为化学势。用公式表示为:
偏摩尔量是指,在等温、等压条件下,保持除B以外的其余组分不变,系统的广度性质X随组分B的物质的量的变化率,称为物质B的某种广度性质X的偏摩尔量,用表示。也可以看作在一个等温、等压、保持组成不变的多组分系统中,当时,物质B所具有的广度性质,偏摩尔量的定义式为 化学势与偏摩尔量的定义不同,偏微分的下标也不同。但有一个例外,即Gibbs自由能的偏摩尔量和化学势是一回事,狭意的化学势就是偏摩尔Gibbs自由能。

3.Roult 定律和Henry定律的表示式和适用条件分别是什么? 答:Roult 定律的表示式为:。式中为纯溶剂的蒸气压,为溶液中溶剂的蒸气压,为溶剂的摩尔分数。该公式用来计算溶剂的蒸气压。适用条件为:定温、稀溶液、非挥发性溶质,后来推广到液态混合物。

Henry定律的表示式为:。式中,和分别是物质B用不同浓度表示时的Henry系数,Henry系数与温度、压力、溶质和溶剂的性质有关。适用条件为:定温、稀溶液、气体溶质,溶解分子在气相和液相有相同的分子状态。

对于液态混合物,Henry定律与Roult定律是等效的,Henry系数就等于纯溶剂的饱和蒸气压。

4.什么是稀溶液的依数性?稀溶液有哪些依数性? 答:
稀溶液依数性是指在溶剂的种类和数量固定后,这些性质只取决于所含溶质粒子的数目,而与溶质的本性无关。

稀溶液中由于溶剂的蒸气压降低,因而导致如下依数性质:
(1)凝固点下降;
(2)沸点升高;
(3)渗透压。

5.溶液的化学势等于溶液中各组分的化学势之和,这样说对不对? 答:
不对。化学势是某组分的偏摩尔Gibbs自由能。溶液中可以分为溶剂的化学势或溶质的化学势,而没有整个溶液的化学势。

6.对于纯组分,它的化学势就等于其Gibbs自由能,这样说对不对? 答:
不对,至少不完整。应该说,某个纯组分的化学势就等于其摩尔Gibbs自由能。

7.在同一稀溶液中,溶质B的浓度可用和表示,则其标准态的选择也就不同,那相应的化学势也不同,这样说对不对? 答:
不对。溶质的浓度表示方式不同,则所取的标准态(即那个假想状态)也不同,它们在那个假想状态时的化学势是不相等的。但是,B物质在该溶液中的化学势只有一个数值,是相同的。

8.二组分理想溶液的总蒸气压,一定大于任一组分的蒸气分压,这样说对不对? 答:
对。因为二组分理想溶液的总蒸气压等于两个组分的蒸气压之和。

9.在室温下,物质的量浓度相同的蔗糖溶液与食盐水溶液的渗透压是否相等? 答:
不相等。渗透压是溶液依数性的一种反映。依数性只与粒子的数目有关,而与粒子的性质无关。食盐水中,NaCl会离解成两个离子,所以物质的量浓度相同的食盐水的渗透压可以是蔗糖溶液渗透压的两倍。

10.农田中施肥太浓时植物会被烧死。盐碱地的农作物长势不良,甚至枯萎,试解释其原因? 答:
这是由于在庄稼的细胞内和土壤中的化学势不等,发生渗透造成的。当土壤中肥料或盐类的浓度大于植物细胞内的浓度时,在植物细胞中的化学势比在土壤中的要高,水就要通过细胞壁向土壤中渗透,所以植物就会枯萎,甚至烧死。

11. 液态物质混合时,若形成液态混合物,这时有哪些主要的混合性质? 答:
混合时体积不变,总体积等于各个纯液态物质体积的加和;
焓值不变;
混合熵增加;
混合Gibbs自由能下降,即:
12.北方人冬天吃冻梨前,将冻梨放入凉水中浸泡,过一段时间后冻梨内部解冻了,但表面结了一层薄冰。试解释原因? 答:
凉水温度比冻梨温度高,可使冻梨解冻。冻梨含有糖分,故冻梨内部的凝固点低于水的冰点。当冻梨内部解冻时,要吸收热量,而解冻后的冻梨内部温度仍略低于水的冰点,所以冻梨内部解冻了,而冻梨表面上仍凝结一层薄冰。

四.概念题参考答案 1.2 mol A物质和3 mol B物质在等温、等压下,混合形成理想液态混合物,该系统中A和B的偏摩尔体积分别为1.79×10-5 m3×mol-1,2.15×10-5 m3×mol-1 ,则混合物的总体积为 ( ) (A) 9.67×10-5 m3 (B) 9.85×10-5 m3 (C) 1.003×10-4 m3 (D) 8.95×10-5 m3 答:(C)。

运用偏摩尔量的加和公式 2.下列偏微分中,能称为偏摩尔量的是 ( )
(A)
(B)
(C)
(D)
答:(A)。根据偏摩尔量定义,凡是容量性质才有偏摩尔量,而且一定要符合等温、等压、除B以外的其他组成不变时,某容量性质随物质B的物质的量的变化率,才能称为偏摩尔量,只有(A)符合。

3.下列偏微分中,不是化学势的是 ( )
(A)
(B)
(C)
(D)
答:(B)。化学势的广义定义是,在保持某热力学函数相应的两个特征变量和除B以外的其他组分不变的情况下,该热力学函数对求偏微分称为化学势。焓的两个特征变量是,所以(B)是偏摩尔量,而不是化学势。

4. 已知373 K时,液体A的饱和蒸气压为133.24 kPa,液体B的饱和蒸气压为66.62 kPa。设A和B 形成理想液态混合物,当A在溶液中的摩尔分数为0.5时,在气相中A的摩尔分数等于 ( ) (A) 1 (B) 1/2 (C) 2/3 (D) 1/3 答:(C)。

用Roult定律算出总蒸气压,再把A的蒸气压除以总蒸气压。

或 5.在298 K和标准压力下,苯和甲苯形成理想的液态混合物。第一份混合物体积为2 dm3,苯的摩尔分数为0.25,苯的化学势为m1,第二份混合物的体积为1 dm3,苯的摩尔分数为0.5,化学势为μ2,则 ( ) (A) m1>μ2 (B) m1<μ2 (C) m1=μ2 (D) 不确定 答:(B)。化学势是偏摩尔Gibbs自由能,是强度性质,与混合物的总体积无关,而与混合物的浓度有关。根据理想液态混合物的化学势表示式, 因为第一份中苯的摩尔分数低于第二份中的摩尔分数,故化学势小。

6.在温度T时,纯液体A的饱和蒸气压为,化学势为,并且已知在大气压力下的凝固点为,当A中溶入少量与A不形成固态溶液的溶质而形成稀溶液时,上述三个物理量分别为,和,则 ( ) (A) ,, (B) ,, (C) ,, (D) ,, 答:(D)。纯液体A的饱和蒸气压和化学势比稀溶液中的大,加入溶质后,稀溶液的凝固点会下降。

7.在298 K时,A和B两种气体单独在某一溶剂中溶解,遵守Henry定律,Henry常数分别为kA和kB,且知kA> kB,则当A和B(平衡时)的压力相同时,在一定量的该溶剂中所溶解的A和B的量的关系为 ( )
(A) A 的量大于 B 的量 (B) A 的量小于 B 的量 (C) A 的量等于 B 的量 (D) A 的量与B的量无法比较 答:(B)。根据Henry定律,当平衡压力相同时,Henry常数大的气体溶质,其溶解的量反而小。

8.在400 K时,液体A的蒸气压为,液体B 的蒸气压为,两者组成理想液态混合物。在达平衡的溶液中,A的摩尔分数为0.6,则气相中B的摩尔分数等于 ( ) (A) 0.60 (B) 0.50 (C) 0.40 (D) 0.30 答:(B)。用Roult定律算出总蒸气压,再把B的蒸气压除以总蒸气压 9.在50℃时,液体A的饱和蒸气压是液体B的饱和蒸气压的3倍,A和B两液体形成理想液态混合物。达气-液平衡时,在液相中A的摩尔分数为0.5,则在气相中B的摩尔分数为 ( ) (A) 0.15 (B) 0.25 (C) 0.5 (D) 0.65 答:(B)。用Roult定律算出总蒸气压,再把B的蒸气压除以总蒸气压 10.在298 K和标准压力下,有两瓶含萘的苯溶液。在第一瓶中有溶液,溶有0.5 mol萘,化学势为。在第二瓶中有溶液,溶有0.25 mol萘,化学势为。两个化学势大小的关系为 ( ) (A) (B) (C) (D) 答:(D)。

化学势是偏摩尔Gibbs自由能,是强度性质,与混合物的总体积无关,而与混合物的浓度有关。两份的浓度相同,故化学势相等。

11.在时,的化学势为,的化学势为,两者大小的关系为 ( ) (A) (B) (C) (D) 无法比较 答:(C)。已知,对于纯组分系统,则。因为,所以。在下,会自发变为。即在相同温度下,加压可以使熔化。

12.在两只烧杯中,各盛有1 kg。向A杯中加入0.01 mol蔗糖,向B杯中加入0.01 mol NaCl,溶解完毕后,两只烧杯按同样的速度冷却降温,则 ( ) (A) A杯先结冰 (B) B杯先结冰 (C) 两杯同时结冰 (D) 不能预测其结冰的次序 答:(A)。稀溶液的依数性只与粒子的数量有关,而与粒子的性质无关。B杯内溶入的是NaCl,NaCl在水中解离,其粒子数几乎是A杯中的两倍,B杯中溶液的凝固点下降得多,所以A杯先结冰。

13.在恒温的玻璃罩中,封入一杯糖水(A杯)和一杯纯水(B杯),使两杯的液面相同,将玻璃罩抽成真空。经历若干时间后,两杯液面的高度将是 ( ) (A) A 杯高于 B 杯 (B) A 杯等于 B 杯 (C) A 杯低于 B 杯 (D) 视温度而定 答:(A)。纯水的饱和蒸气压大于糖水,纯水不断蒸发,蒸气在含糖水的A 杯中不断凝聚,所以A 杯液面高于B 杯。

14.冬季建筑施工中,为了保证施工质量,常在浇注混凝土时加入少量盐类,其主要作用是? ( ) (A) 增加混凝土的强度 (B) 防止建筑物被腐蚀 (C) 降低混凝土的固化温度 (D) 吸收混凝土中的水份 答:(C)。混凝土中加入少量盐类后,使凝固点下降,防止混凝土结冰而影响建筑物的强度。

15.盐碱地的农作物长势不良,甚至枯萎,其主要原因是 ( ) (A) 天气太热 (B) 很少下雨 (C) 肥料不足 (D) 水分从植物细胞向土壤倒流 答:(D)。

盐碱地中含盐量高,水在植物细胞中的化学势大于在盐碱地中的化学势,水分会从植物细胞向土壤渗透,使农作物长势不良。

五.习题解析 1. 在298 K时,有一个的稀水溶液,其密度为,的质量分数。已知在该温度下,纯水的密度为。试计算的:① 质量摩尔浓度,② 物质的量浓度和③ 物质的量分数。

解:① 质量摩尔浓度是指,在1 kg溶剂中含溶质的物质的量,查原子量表得的摩尔质量。设溶液的质量为, ② 物质的量浓度是指,在1 dm3 溶液中含溶质的物质的量,设溶液质量为1 kg (3)设溶液质量为, 2.将的乙醇(B)和的水(A)混合得乙醇的水溶液,溶液的密度为。已知溶液中乙醇的偏摩尔体积,试求溶液中水的偏摩尔体积。已知水和乙醇的摩尔质量分别为,。

解:根据偏摩尔量的加和公式,有 (1)
(2)
上面两式应该相等,所以有 解得 3.在298 K时,有大量的甲苯(A)和苯(B)的液态混合物,其中苯的摩尔分数。如果将1 mol纯苯加入这混合物中,计算这个过程的。

解:设1 mol纯苯的Gibbs自由能为,在液态混合物中1 mol苯的偏摩尔Gibbs自由能为,所求的就是这1 mol苯,在加入混合物的前后,Gibbs自由能的差值, 4.在263 K和下,有1 mol过冷水凝固成同温、同压的冰。请用化学势计算这过程的。已知在263 K 时,的饱和蒸气压,的饱和蒸气压。

解:过冷水结冰是个不可逆过程,可以设计一个始、终态相同的可逆过程。在保持温度不变的情况下,分如下五步等温可逆变压过程进行:
(1)从等温可逆降压至的饱和蒸气压;

(2)在的饱和蒸气压下达成气-液两相平衡;

(3)的等温可逆变压过程;

(4)在的饱和蒸气压下达成气-固两相平衡 (5)等温可逆升压至。即 第(1),(5)两步是凝聚相的等温可逆变压过程,由于凝聚相的可压缩性很小,摩尔体积不大,受压力的影响很小,所以这两步的Gibbs 自由能的变化值可以忽略不计。(2),(4)两步是等温、等压可逆相变,Gibbs 自由能的变化值等于零。所以,总的Gibbs 自由能的变化值就等于第三步的Gibbs 自由能的变化值, 现在题目要求用化学势来计算,其实道理是一样的,计算更简单。因为纯组分的化学势就等于摩尔Gibbs 自由能,水蒸气化学势的标准态可以相消,所以 5. 液体A与液体B可以形成理想的液态混合物。在343 K时,1 mol A和2 mol B所形成的混合物的蒸气压为50.663 kPa,若在溶液中再加入3 mol A,则溶液的蒸气压增加到70.928 kPa,试求:
(1)A和B在343 K时的饱和蒸气压和。

(2)对于第一种混合物,在气相中A,B的摩尔分数和。

解:
(1)液态混合物上的总蒸气压等于A和B的蒸气压的加和, (1)
(2)
联立(1),(2)式,解得 (2) 6.在293 K时,苯(1)的蒸气压是13.332 kPa,辛烷(2)的蒸气压为2.6664 kPa,现将1 mol辛烷溶于4 mol苯中,形成理想的液态混合物。试计算:
(1)系统的总蒸气压。

(2)系统的气相组成。

(3)将(2)中的气相完全冷凝至液相,再达到气液平衡时,气相的组成。

解:
(1)
(2)
(3)将上述气相完全冷凝至气-液平衡时,新液相的组成与上述气相的组成相同。

这时的气相组成为 7.在一定温度下,液体A和B可形成理想的液态混合物。已知在该温度时,,。把组成为的二元气态混合物,放入一带有活塞的气缸中进行恒温压缩,试计算:
(1)刚开始出现液相时,蒸气的总压。

(2)在该温度和压力下,A和B的液态混合物沸腾时液相的组成。

解:(1)设:刚开始出现液相时,液相中A和B的组成分别为和,理想液态混合物上的总压。因为,,所以有 (1)
(2)
将式(1),(2)联立,解得:
, (2)A和B的液态混合物沸腾时,其总蒸气压等于外压。设液相的组成为,则有 解得液相的组成为 , 8.在333 K时,设液体A 和 B 能形成理想的液态混合物。已知在该温度时,液体A和B的饱和蒸气压分别为,。当组成为的混合物在333 K汽化时,收集该蒸气并将其冷凝液化,测得该冷凝液的蒸气压,试求的值。

解:
蒸气冷凝液的组成x′A、x′B,就等于组成为的混合物的蒸气相的组成和, 解得 解得 9.在298 K和标准压力下,将2 mol 苯与3 mol 甲苯混合,形成理想的液态混合物。求该过程的,,,,,和。

解:根据形成理想液态混合物的特性,没有热效应,没有体积的变化,所以有 , , , , 10.液体A和B可以形成理想的液态混合物。在320 K时,将3 mol A和1 mol B混合形成液态混合物I,总蒸气压为5.33×104 Pa。再加入2 mol B 形成理想液态混合物II,总蒸气压为 6.13×104 Pa。试计算:
(1)未混合前纯液体A和B的饱和蒸气压和。

(2) 与理想液态混合物I达平衡的气相组成。

(3) 在形成理想液态混合物I的过程中,Gibbs自由能的变化值。

(4) 若在理想液态混合物II中再加入3 mol B,形成理想液态混合物Ⅲ的蒸气压。

解:(1) (a) (b) 将(a)式与 (b) 式联立,解得:
(2)
(3) (4) 11.在298 K时,蔗糖稀水溶液的蒸气压为,纯水的蒸气压为。试计算:
(1) 在溶液中,蔗糖的摩尔分数。

(2) 溶液的渗透压。已知水的密度约为。

解:(1)由于是蔗糖的稀水溶液,根据Raoult定律 (2) 渗透压的计算公式为 需要将(1)中得到的组成的值换算成的值,这时要引进适当的近似, 12.在293 K时,乙醚的蒸气压为58.95 kPa。今在0.10 kg乙醚中溶入某非挥发性的有机物质0.01 kg,乙醚的蒸气压降低到56.79 kPa,试求该有机物的摩尔质量。已知乙醚的摩尔质量为。

解:设溶液中非挥发性有机物的摩尔分数为,根据Raoult定律有 (1)
根据摩尔分数的定义 (2)
(1)和(2)两个的表示式应该相等,所以有 解得 13.苯在101 325 Pa下的沸点为353.35 K,沸点升高系数,求苯的摩尔汽化焓。已知苯的摩尔质量。

解:
已知沸点升高系数的表示式为 14.将7.900 mg酚酞溶在129.2 mg的樟脑中,测得该溶液的凝固点为164.0°C,计算酚酞的摩尔质量。已知纯樟脑的熔点是172.0°C,凝固点降低系数。

解:
根据凝固点降低的计算公式 15.在298 K时,将非挥发、不解离的溶质B溶解于纯水中,测得该稀溶液的密度。已知溶质B的摩尔质量,水的沸点升高系数。试计算:
(1)该稀溶液的沸点升高值。

(2)该稀溶液的渗透压。

解:(1)在该稀溶液中,溶质B的质量摩尔浓度为 (2)要计算渗透压,首先要计算质B的物质的量浓度 16.在大气压力下,将联苯(B)溶入的纯苯(A)中,所得溶液的沸点为,已知纯苯的沸点为。试求:
(1)溶剂苯的沸点升高系数,已知联苯的摩尔质量为。

(2)苯的摩尔气化焓,已知苯的摩尔质量。

解:(1)在所形成的溶液中,溶质B的质量摩尔浓度为 (2)
已知 17.在310 K时,测得人类血浆的渗透压为,试计算配制输液用的葡萄糖溶液中,葡萄糖的质量分数。设血浆的密度近似等于水的密度,。已知:葡萄糖的摩尔质量为。如果配制的葡萄糖溶液太浓或太稀,输液后会造成什么严重后果? 解:配制输液用的葡萄糖溶液,必须是等渗溶液,即它的渗透压应该与血浆的渗透压基本相同。如果配制的葡萄糖溶液太浓,输液后会造成血球内的水分往外渗透,使血细胞萎缩。如果配制的葡萄糖溶液太稀,输液后会造成水分大量向血球内渗透,使血细胞胀大,甚至破裂,这样对人的健康不利,严重时会危及生命。

设葡萄糖的质量分数为 18.在0.1 kg乙醇和0.1 kg的苯液体中,分别溶于的苯甲酸。测得乙醇和苯溶液的沸点分别升高了0.54 K 和 0.60 K。试用计算说明,苯甲酸在乙醇和在苯中所存在的状态(是解离、缔合还是单分子状态)。已知苯和乙醇的沸点升高系数分别为和,苯甲酸的摩尔质量为 。

解:要了解苯甲酸在乙醇和在苯中所存在的状态,就是要计算苯甲酸在乙醇和在苯中的摩尔质量。

由此可见,苯甲酸在乙醇中既不电离,也不缔合,是以单分子状态存在。而在苯中,基本以双分子缔合形式存在。

19.在298 K时,将2 g某化合物溶于1 kg水中,其渗透压与将0.8 g葡萄糖(C6H12O6)和1.2 g蔗糖(C12H22O11)溶于1 kg水中的渗透压相同。试计算:① 该化合物的摩尔质量;
② 该溶液的凝固点降低值;
③ 该溶剂的蒸气压降低值。已知:水的冰点下降系数,298 K时水的饱和蒸气压,稀溶液的密度可视为与水相同,葡萄糖的摩尔质量,蔗糖的摩尔质量为。

解:① 溶液的依数性只与溶液中溶质的质点数目有关,与溶质的性质无关。设2 g某化合物的物质的量为,0.8 g葡萄糖和1.2 g蔗糖的总的物质的量为。因为假定稀溶液的密度可视为与水相同,所以两个溶液的体积基本相同。根据渗透压计算公式 两个溶液的体积基本相同,渗透压相同,则两种溶质的物质的量也相同,即 ② ③ 要计算溶剂的蒸气压降低值,要先计算溶质的摩尔分数 根据Raoult定律 20.在300 K时,液体A和B形成非理想的液态混合物。已知液态A的蒸气压为,液态B的蒸气压为。当2 mol A和2 mol B混合后,液面上的总蒸气压。在蒸气中A的摩尔分数,假定蒸气为理想气体。试计算:
(1) 溶液中A和B的以摩尔分数表示的活度和。

(2) 溶液中A和B的相应的活度因子和。

(3) 求A和B在混合时的Gibbs自由能变化值ΔmixG。

解:
(1) 液态A和B的标准态就是它们的纯态 (2) (3) 对于非理想的液态混合物,化学势的表示式为 或直接利用混合Gibbs自由能的计算公式进行计算

推荐内容

留琼范文网 www.bjcnart.com

Copyright © 2002-2018 . 留琼范文网 版权所有

Top