阿贝成像原理和空间滤波 【实验目的】 1.了解阿贝成像原理,懂得透镜孔径对成像的影响. 2.了解透镜的傅里叶变换功能及空间频谱的概念. 3.了解两种简单的空间滤波. 4.掌握在相干光条件下调节多透镜系统的共轴. 【实验仪器】 光具座,氦氖激光器,溴钨灯(12V,50W)及直流电源,薄透镜若干,可变狭缝光阑,可变圆孔光阑,调制用光阑,光栅(一维、正交及调制各一),光学物屏,游标卡尺,白屏,平面镜. 【实验原理】 阿贝在1873年为德国蔡斯工厂改进显微镜时发现,大孔径的物镜能导致较高的分辨率,这是因为较大的孔径可以收集全部衍射光,这些衍射光到达像平面时相干叠加出较细的细节.例如,用一定空间频率的光栅作为物,并且用单色光加以照明,物后的衍射光到达透镜时(这里先考虑±1级衍射),当O级与级衍射光到达像平面时,相干叠加成干涉条纹,就是光栅的像;
如果单色光波长较长或者L孔径小,只接收了零级光而把级光挡去,那么到达像平面上的只有零级光,就没有条纹出现,我们说像中缺少了这种细节.根据光栅方程,不难算出,物体上细节d能得以在像平面有反映的限制为 (1) 为透镜半径对物点所张的角.换句话说,可分辨的空间频率为 (2) 物平面上细节越细微、即空间频率越高,其后衍射光的角度就越大,更不可能通过透镜的有限孔径到达像平面,当然图像就没有这些细节.透镜就成像光束所携带的空间频率而言,是低通滤波器,其截止频率就是(2)式所示的,.瑞利在1896年认为物平面每一点都发出球面波,各点发出的波在透镜孔径上衍射,到达像面时成为爱里斑,并给出分辨两个点物所成两个模糊像——两个爱里斑的判据.其实阿贝与瑞利两种方法是等价的. 波特在1906年把一个细网格作物(相当于正交光栅),但他在透镜的焦平面上设置一些孔式屏对焦平面上的衍射亮点(即夫琅和费衍射花样)进行阻挡或允许通过时,得到了许多不同的图像.设焦平面上坐标为,那么与空间频率相应关系为 (3) (这适用于角度较小时,为焦距,).焦平面中央亮点对应的是物平面上总的亮度(称为直流分量),焦平面上离中央亮点较近(远)的光强反映物平面上频率较低(高)的光栅调制度(或可见度).1934年译尼克在焦平面中央设置一块面积很小的相移板,使直流分量产生位相变化,从而使生物标本中的透明物质不须染色变成明暗图像,因而可研究活的细胞,这种显微镜称为相衬显微镜.为此他在1993年获得诺贝尔奖.在20世纪50年代,通信理论中常用的傅里叶变换被引入光学,60年代激光出现后又提供了相干光源,一种新观点(傅里叶光学)与新技术(光学信息处理)就此发展起来. 物的内容中如含周期性结构,可以看成是各种频率的光栅组合而成,用数学语言讲就是把物展开成空间的傅里叶级数.如物的内容不是周期性的,在数学上就要作傅里叶变换,在物理上可由透镜来实现.可以证明,由于透镜作为位相变换器能把平面波转换为球面波,当单色平面波照射在透明片上[其振幅透射率为]时,如图1中光路所示,透镜后焦平面上光场复振幅分布即为其傅里叶变换 (4) 图1 式中,,实际上这也就是的夫琅和费衍射.当不在透镜前焦面上时,后焦面上仍为其傅里叶变换,但要乘上位相弯曲因子.当入射的不是平面波,而是球面波(发散、会聚均可),则在入射波经透镜(甚至不经透镜)后形成的会聚点所在平面上也是傅里叶变换,只是也附加上了位相弯曲因子.傅里叶变换的例子如函数,函数,函数函数及许多性质的标度、卷积定理都可以由此在物理上演示出来. 如图2所示,在透镜后再设一透镜,则在Q面上的复振幅分布又经过一次傅里叶变换, (5) 物函数的倒置也就是的像.前述在平面波照射下在前焦平面上的时,在照明光会聚点有其傅里叶变换,但要加上位相弯曲因子,该位相弯曲相当于会聚球面波照在傅里叶变换上,到达该球面波会聚点所在平面Q时,也是完成第二次傅里叶变换,只是标度有变化,即像是放大或缩小的.因此从波动光学的观点来看,正是透镜的傅里叶变换功能造成了其成像的功能.这样,就用波动光学的观点叙述了成像过程.这不但说明了几何光学已经说明的透镜成像功能,而且还预示了在频谱平面上设置滤波器可以改变图像的结构,这后者是无法用几何光学来解释的.前述相衬显微镜即是空间滤波的一个成功例子.除了下面实验中的低通滤波、方向滤波及调制等较简单的滤波特例外,还进行特征识别、图像合成、模糊图像复原等较复杂的光学信息处理.因此透镜的傅里叶变换功能的涵义比其成像功能更深刻、更广泛. 图2 【实验内容】 共轴调节.首先,要调激光束平行于光具座(图3),并位于光具座正上方,把屏Q插在光具座滑块上,并移近激光架LS,把LS作上下、左右移动,使光束偏离O,调节LS的俯仰及侧转,使光束又穿过小孔;
再把Q推至LS边上,反复调节,直到Q在光具座平移时激光束均穿过O为圆心的孔,以后就不再需要改变LS的位置。
在做以下几个实验时,都要用透镜,在加入透镜L后,如激光束正好射在L的光心上,则在屏Q上的光斑以0为中心,如果光斑不以O为中心,则需调节L的高低 图3 及左右,直到经过L的光束不改变方向(即仍打在0上)为止;
此时在Ls处再设带有圆孔P的光屏,从L前后两个表面反射回去的光束回到此P上,如二个光斑套准并正好以P为中心,则说明L的光轴正好就在P、O连线上.不然就要调整L的取向.如光路中有几个透镜,先调离Ls最远的透镜,再逐个由远及近加入其他透镜,每次都保持两个反射光斑套准在P上,透射光斑以O为中心,则光路就一直保持共轴. 1.阿贝成像原理 (1)按图4布置光路.G是空间频率为每毫米几十条的光栅,在实验中作为物.L是焦距为10cm的透镜,移动L使光栅在3m处白屏上成放大的像(也可以用平面镜把光束反射到实验桌上的自屏上,但要用涂金属的那面,不要用玻璃面去反射,为什么?可以试试.) (2)用白纸插入G之后的光路中并从G处移到L可看到G后 图4 衍射光束逐步分开;
再从L移到P处,可看到光束又逐步合到一起,形成光栅像. (3)在L前设可变圆孔光阑P;
在逐步减小光阑时在L后用白纸检查光束被挡去情况,如有三束光通过,则Q上仍有条纹;
如仅有一束光通过,Q上就无条纹,也就是不能分辨这个空间频率的细节了(P不一定紧贴在L之前). (4)使P上某一圆孔刚能容纳三束光通过,测量G、P距离及圆孔半径,估算G的空间频率.并估算能分辨此频率的最小透镜孔径. 2.波特实验 仍然使用图4中光路,但改为到L的焦平面F上来改变像的空间频率结构. 把毛玻璃放在F面处可看到一系列光点,它们相应于物光栅夫琅和费衍射的0,±1,±2,…级的衍射极大值.用直尺或游标卡尺测出各衍射级离中央亮点的距离,把透镜焦距、所用激光波长与代入(3)式,算出这些亮点对应的空间频率,并与通过物像关系算出的光栅空间频率进行比较(由物距、像距,像上条纹宽度计算),说明物理意义.利用可变狭缝光阑及小磁块,挡去某些衍射级,观察像屏S上图像的变化情况,并作出解释(可以从傅里叶光学与光波干涉两种观点来解释). 3.透镜的傅里叶变换功能 按图5(a)布置光路,L1、L2构成扩束准直系统,扩束后光束截面直径增大(倍数为两透镜焦距之比).输入至输出共距四倍焦距,故可称为系统,是典型的光束信息处理光路,能进行二次傅里叶变换. 用系统直接观察傅里叶变换,有时感到花样较小,不易看清,图5(b)光路中的物屏可放在位置1到2之间,在照明光的会聚点上都可以看到它的夫琅和费衍射,或者说傅里叶变换.自己选择一个位置(在2处,物离Q远,则花样分布较大,便于观察),先后插入圆孔、双缝、单缝,观察其傅里叶变换光强分布情况并对傅里叶变换的标度性质、卷积定理作出物理解释.设此时P、Q距离为z,则Q空间频率标度为. 图5 4.空间滤波实验 (1)低通滤波 前述阿贝--波特实验中狭缝起的是方向滤波器的作用,可以滤去图像中某个方向的结构.而圆孔可作低通滤波器,滤去图像中高频成分,只让低频成分通过. ①按图6布置好光路,先放人L2,再放入L1,每次都调共轴,经L1扩束后光斑应打在L2中央.放人物屏P后注意P、Q的物像关系,在照明光会聚点设圆孔滤波器F. 图6 本实验物屏中央是透光的“光”字与细网格叠加在一起,网格空间频率约为10条/mm,调P、Q位置,使Q上有清晰的放大像,能看清其网格结构. ②观察F面上频谱分布,可以看到排成十字形的点阵.改变F上圆孔,逐步缩小,在圆孔直径≥lmm时(可以通过多个光点),仍可看到像中有网格结构,而换到O.5mm直径圆孔时,只允许中央亮点通过,则在Q面上看到了没有网格的“光”字.这是因为“光”的空间频率低,就集中在光轴附近很小范围内.可见小圆孔起到只通过低频的作用. 在更换圆孔时,要特别细心,光轴必须严格穿过小圆孔圆心,才能有良好的实际效果,否则可能“光”字不完整.如试验一段时间未能奏效,可以改用下法:把字屏P移走,把F屏上O.5mm圆孔移在中央,然后细心地用手上下移动圆孔,左右调节滑块座上微动螺旋及前后推移滑块位置,同时观察Q上衍射花样以决定如何移动小圆孔,直到最后出现大而均匀的光斑,再插入物屏P,像屏Q上必有清晰字样(不带网格).因为此时光束会聚点正好在小圆孔圆心上. 把小圆孔移到中央亮点以外的亮点上,在Q屏上仍能看到不带网格的“光”字,只是较暗淡一些.这说明当物为“光”与网格的乘积时,其傅里叶谱是“光”的谱与网格的谱的卷积,因此每个亮点周围都是“光”的谱,再作傅里叶变换就还原成“光”字.这就演示了傅里叶变换的乘积定理. (2)用调制产生假彩色 ①类似于通信技术中把信号与载波相乘以调制振幅与位相,便于发送;
光学信息处理中把图像(信号)与空间载频(光栅)相乘,也起到调制作用,便于进行处理. 本实验中所用的物是由方向不同的一维光栅组合而成的(图7).用激光束照射不同部位,就可在其后看到不同取向的衍射光线.光栅空间频率约为100条/mm,三组光栅取向各相差600。
图7 ②按图8(a)布置光路,S为溴钨灯,L1起聚光作用,在L1后聚光亮点处设滤波器F,注意使S、L1距离大于L1、F距离,以获得较小的亮点.物P紧靠在L1后,F后设L2,L2把P的像成在Q屏上,为了得到较亮的像,最好P、L2距离大于或等于L2、Q距离. ③观察F面频谱的特点:第一,由于输入图像由三个取向不同的光栅构成,每组光栅对应一个衍射方向,衍射光线所在平面垂直于光栅的取向.如把该方向频谱全部挡去,则输出面上相应区域光强就转为零,例如把水平方向的频谱挡去,可以看到像上天空呈黑暗.其余类推.第二,由于照明光是白光,根据光栅方程,每组频谱零频的各色光衍射角均为0,各色光的零级叠加在一起就呈白色;
而在其余±1,±2,…级上,波长长的色光衍射角大,因此各级均呈现从紫(在内)到红(在外)的连续的光谱色. 图8 ④如图9所示,再次仔细调整共轴,使白光亮点恰好射在滤波器中央F透光处,而六条光谱带恰好从六条狭长孔中穿过.然后用带有铜片的小磁块在屏上移动,使铜片上小孔处在一级谱的某种颜色上,该色光得以通过.使孔1、孔通过黄光,输出平面上天空部分就呈蓝色,同理让孔2与孔通过红光,孔3与孔通过绿光,相应就在输出像中出现红色的房子与绿色的草地. 图9 ⑤用白纸在F屏后由近到远移动,观察各衍射级光点的颜色及光斑形状的变化情况,再次思考输入以上光栅取向、频谱面上变色光分布及所携带信息及输出谱形之间的关系. ⑥重新调整滤波孔位置,改变输出图像的色彩,这说明色彩是人为指定的而非天然色. 在实验过程中还有两点须注意:
第一,溴钨灯额定电压为12V,因此为延长使用寿命在调整光路时电压只放在6V左右,在上述第3项调整成功后,才把电压调整到lOV,以观察输出彩色效果,观察后随即把电压调低至6V然后再关电源.电压始终不得超过12V,并不准在12V时关掉电源,否则下次开电源的瞬间,极易烧断灯丝. 第二,光源S的开孔较大,射出的灯光经过光具座的反射,易在输出面Q处增添杂散光,干扰对彩色像的观察,可在P、F各屏的下方用黑纸挡去这些杂光. 【复习思考题】 1.从阿贝成像原理出发,要获得较高的成像分辨率可以采用什么办法?如在照明光波长、物镜孔径已确定后,增大目镜的放大率能否提高分辨率? 2.用惠更斯原理解释低通空间滤波实验中频谱上各次极大亮点均带有“光”字的频谱.在本实验中如滤波孔直径从0.5减小到5,试设想输出图像是什么样的? 3.在调制实验中,物面上没有光栅处原是透明的,像面上相应部位却是暗的,为什么?如果要让这些部位也是亮的,该怎么办,此时还能进行假彩色编码吗? 4.对透镜的功能有何新认识?
扩展阅读文章
推荐阅读文章
推荐内容
留琼范文网 www.bjcnart.com
Copyright © 2002-2018 . 留琼范文网 版权所有